考虑1-n之间有无实边,有实边我们要么直接走实边到n,要么全部走虚边到n,看哪个快,全部走虚边涉及到一个bfs的复杂度证明的问题,我们用一个链表来维护还有哪些点没有访问到,那么对于一个起点u,他对链表中的每一个v失配,都说明u,v之间存在一条实边,那么我们最多失配m次,所以复杂度是(m+n)logn的,logn是用set找是否失配的问题。
如果1-n之间没有实边,要么走虚边直达,要么全部走实边,这种情况直接dijkstra就行了。
#include<bits/stdc++.h>
#define maxl 100010
using namespace std;
const long long inf=1ll<<61;
int n,m,a,b,cnt;
int ehead[maxl],nxt[maxl],pre[maxl];
long long dis[maxl],ans;
struct ed
{
int to,nxt;
}e[maxl*10];
typedef pair<int,int> p;
set <int> s[maxl];
set <int> :: iterator it;
priority_queue<p,vector<p>,greater<p> >q;
queue <int> que;
bool in[maxl];
inline void add(int u,int v)
{
e[++cnt].to=v;
e[cnt].nxt=ehead[u];ehead[u]=cnt;
}
inline void prework()
{
for(int i=1;i<=n;i++)
{
s[i].clear();
ehead[i]=0;
dis[i]=inf;in[i]=false;
}
cnt=0;int u,v;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
add(u,v);add(v,u);
s[u].insert(v);s[v].insert(u);
}
}
inline void mainwork()
{
p d;int u,v;
if(s[1].find(n)==s[1].end())
{
if(a<=b)
{
ans=a;
return;
}
else
{
while(!q.empty()) q.pop();
dis[1]=0;q.push(make_pair(0,1));
while(!q.empty())
{
d=q.top();q.pop();
u=d.second;
if(d.first>dis[u] || in[u])
continue;
in[u]=true;
for(int i=ehead[u];i;i=e[i].nxt)
{
v=e[i].to;
if(dis[v]>dis[u]+b && !in[v])
{
dis[v]=dis[u]+b;
q.push(make_pair(dis[v],v));
}
}
}
ans=min(dis[n],1ll*a);
}
return;
}
else
{
if(b<=a)
{
ans=b;
return;
}
else
{
for(int i=2;i<=n;i++)
{
nxt[i]=i+1;
pre[i]=i-1;
}
while(!que.empty()) que.pop();
pre[2]=0;nxt[0]=2;
dis[1]=0;
que.push(1);int l,r;
while(!que.empty())
{
u=que.front();que.pop();
v=nxt[0];
if(dis[n]<inf)
break;
if(dis[u]+a>=b)
break;
while(v<=n)
{
if(s[u].find(v)==s[u].end())
{
dis[v]=dis[u]+a;
l=pre[v];r=nxt[v];
pre[r]=l;nxt[l]=r;
que.push(v);
}
v=nxt[v];
}
}
ans=min(dis[n],1ll*b);
}
}
}
inline void print()
{
printf("%lld\n",ans);
}
int main()
{
while(~scanf("%d%d%d%d",&n,&m,&b,&a))
{
prework();
mainwork();
print();
}
return 0;
}