据说这道题比赛的时候好多人开个map然后莽过去了= =,我当时算复杂度发现莽完全会被卡= =,然后这场HNCPC2016打的巨捞。orz xkp考场上想出了边变成点跑最短路。qt说dls上次讲多校那个坐地铁的时候讲过这样的做法,不过那题我当时直接bfs加dfs过去了,因为换线的代价为1而这里是一个绝对值。
我们考虑每一个点,他连了很多条边,我们把这些边按照ci排个序,变成c1.c2,c3,...ck,然后每条边生成一个点,1到2号点连长度为c2-c1的双向边,相邻大小两个边之间连ci-c(i-1)的双向边,然后边生成的点,再连到另外一端的边生成的点中去,长度为原来的边长t,那么原图中的点就变成了一个圈,然后这个圈上的点又连向别的圈上的点,每条边相当于被拆成了两个点,一个圈内两个点之间的距离就是|ci-cj|。
然后我们把1生成的所有点赋值为0,跑最短路,然后在n生成的所有点中找最小值就行
补题的时候小根堆开成大根堆了。。。以前没有检查最前面全局变量的习惯,这次对拍才找出来,菜哭.jpg
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#define maxl 400010
#define pb push_back
#define mp make_pair
using namespace std;
int n,m,cnt,tot;
int ehead[maxl];
typedef pair<long long,int> p;
priority_queue <p,vector<p>,greater <p> > q;
long long ans;
long long dis[maxl];
struct edge
{
int x,y,c,t,id;
bool operator <(const edge &b) const
{
if(c==b.c)
return id<b.id;
else
return c<b.c;
}
bool operator ==(const edge &b) const
{
return id==b.id;
}
};
vector <edge> node[maxl];
vector <int> num[maxl];
struct ed
{
int to,nxt,l;
}e[maxl<<1];
bool in[maxl];
inline void add(int u,int v,int l)
{
e[++cnt].to=v;e[cnt].l=l;
e[cnt].nxt=ehead[u];ehead[u]=cnt;
}
inline void prework()
{
for(int i=1;i<=n;i++)
node[i].clear(),num[i].clear();
edge d;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d%d",&d.x,&d.y,&d.c,&d.t);
d.id=i;
node[d.x].pb(d);
node[d.y].pb(d);
}
for(int i=1;i<=n;i++)
sort(node[i].begin(),node[i].end());
tot=0;
for(int i=1;i<=n;i++)
{
int l=node[i].size();
for(int j=0;j<l;j++)
num[i].pb(++tot);
}
cnt=0;
for(int i=1;i<=tot;i++)
ehead[i]=0;
int x,y,xnum,ynum,yidx;
for(int i=1;i<=n;i++)
{
int l=node[i].size();
for(int j=0;j<l-1;j++)
add(num[i][j],num[i][j+1],node[i][j+1].c-node[i][j].c);
for(int j=l-1;j>=1;j--)
add(num[i][j],num[i][j-1],node[i][j].c-node[i][j-1].c);
for(int j=0;j<l;j++)
{
x=node[i][j].x;y=node[i][j].y;
if(x!=i)
swap(x,y);
yidx=lower_bound(node[y].begin(),node[y].end(),node[i][j])-node[y].begin();
xnum=num[i][j];ynum=num[y][yidx];
add(xnum,ynum,node[i][j].t);
}
}
}
inline void mainwork()
{
while(!q.empty()) q.pop();
for(int i=1;i<=tot;i++)
in[i]=false,dis[i]=-1;
int l=num[1].size();
for(int j=0;j<l;j++)
{
dis[num[1][j]]=0;
q.push(mp(0,num[1][j]));
}
int u,v;p d;
while(!q.empty())
{
do
{
d=q.top();q.pop();
u=d.second;
}while(((dis[u]<d.first && dis[u]!=-1) || in[u]) && !q.empty());
in[u]=true;
for(int i=ehead[u];i;i=e[i].nxt)
{
v=e[i].to;
if(dis[v]>dis[u]+e[i].l || dis[v]==-1)
{
dis[v]=dis[u]+e[i].l;
q.push(make_pair(dis[v],v));
}
}
}
l=num[n].size();
ans=-1;
for(int j=0;j<l;j++)
{
if(dis[num[n][j]]<ans || ans==-1)
ans=dis[num[n][j]];
}
}
inline void print()
{
printf("%lld\n",ans);
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
prework();
mainwork();
print();
}
return 0;
}