hdu6768 The Oculus 2020hdu多校第2场

http://acm.hdu.edu.cn/showproblem.php?pid=6768

看到只差了一位,也就是一个fibonacci数,也就是a*b-c=f_k,那么只要找到这个fk就行了

那么直接hash就行了,搞两个取模,基本冲突不了,加了读入优化2s过,其实可以换unordered_map更快一些,但是不能映射pair,需要手动把两个数字拼成long long。也可直接扫一遍找

#include<bits/stdc++.h>
using namespace std;
namespace FastIO {
    const int SIZE = 1 << 16;
    char buf[SIZE], obuf[SIZE], str[60];
    int bi = SIZE, bn = SIZE, opt;
    int read(char *s) {
        while (bn) {
            for (; bi < bn && buf[bi] <= ' '; bi++);
            if (bi < bn) break;
            bn = fread(buf, 1, SIZE, stdin);
            bi = 0;
        }
        int sn = 0;
        while (bn) {
            for (; bi < bn && buf[bi] > ' '; bi++) s[sn++] = buf[bi];
            if (bi < bn) break;
            bn = fread(buf, 1, SIZE, stdin);
            bi = 0;
        }
        s[sn] = 0;
        return sn;
    }
    bool rd(int& x) {
        int n = read(str), bf;
        if (!n) return 0;
        int i = 0; if (str[i] == '-') bf = -1, i++; else bf = 1;
        for (x = 0; i < n; i++) x = x * 10 + str[i] - '0';
        if (bf < 0) x = -x;
        return 1;
    }
};
using namespace FastIO;
typedef long long ll;
const int maxl=2e6+10;
const int mod1=1e9+9;
const int mod2=1423333;

int alen,blen,clen,k;
int a[maxl],b[maxl],f1[maxl],f2[maxl],c[maxl];
int a1,a2,b1,b2,c1,c2;
typedef pair<int,int> p;
map <p,int> mp;

inline void prework()
{
	a1=a2=b1=b2=c1=c2=0;
	//scanf("%d",&alen);
	rd(alen);
	for(int i=1;i<=alen;i++)
	{
		rd(a[i]);
		if(a[i])
			a1=(a1+f1[i])%mod1,a2=(a2+f2[i])%mod2;
	}
	rd(blen);
	for(int i=1;i<=blen;i++)
	{
		rd(b[i]);
		if(b[i])
			b1=(b1+f1[i])%mod1,b2=(b2+f2[i])%mod2;
	}	
	rd(clen);
	for(int i=1;i<=clen;i++)
	{
		rd(c[i]);
		if(c[i])
			c1=(c1+f1[i])%mod1,c2=(c2+f2[i])%mod2;
	}
}

inline void mainwork()
{
	ll d1=1ll*a1*b1%mod1,d2=1ll*a2*b2%mod2;
	ll e1=((d1-c1)%mod1+mod1)%mod1;
	ll e2=((d2-c2)%mod2+mod2)%mod2;
	k=mp[{e1,e2}];
}

inline void print()
{
	printf("%d\n",k);
}

int main()
{
	f1[1]=1;f1[2]=2;f2[1]=1;f2[2]=2;
	mp[{1,1}]=1;mp[{2,2}]=2;
	for(int i=3;i<maxl;i++)
	{
		f1[i]=(f1[i-1]+f1[i-2])%mod1;
		f2[i]=(f2[i-1]+f2[i-2])%mod2;
		mp[{f1[i],f2[i]}]=i;
	}
	int t;
	//scanf("%d",&t);
	rd(t);
	for(int i=1;i<=t;i++)
	{
		prework();
		mainwork();
		print();
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值