主动学习:让模型学得更快更精准

目录

引言

1. 主动学习的基本概念

2. 主动学习的三大采样策略

    (1) 不确定性采样(Uncertainty Sampling)

    (2) 多样性采样(Diversity Sampling)

    (3) 基于不确定性和多样性的混合方法

3. 主动学习的流程

4. 主动学习的应用场景

    (1) 医学影像分析

    (2) 自然语言处理

    (3) 无人驾驶

5. 主动学习的Python代码实现

    代码说明

6. 总结


引言

        在机器学习中,训练数据的数量和质量对于模型的性能至关重要。然而,标签数据的获取往往耗时、昂贵,尤其在医学影像分析、无人驾驶等领域标注代价更高。主动学习(Active Learning)提供了一种更高效的学习方法:通过主动选择数据来标注,让模型以较少的数据获得更高的精度。在本篇博客中,我们将深入探讨主动学习的概念、常用方法及应用场景。

1. 主动学习的基本概念

        主动学习是一种学习范式,与传统的被动学习不同。在被动学习中,模型被动地接受并学习大量随机选取的已标注数据;而主动学习则让模型在训练过程中“主动”选择最有信息量的样本进行标注,从而在最小的标注成本下达到最优的模型性能

        主动学习的主要目标是找到“有价值”的数据点,这些数据点可以显著提升模型性能。这样,模型可以在有限的数据下快速学习并获得不错的效果。

2. 主动学习的三大采样策略

        主动学习通过选择那些对模型性能提升最有帮助的数据点。在选择数据点的过程中,常用的策略有以下几种:

    (1) 不确定性采样(Uncertainty Sampling)

        不确定性采样基于模型的不确定性来选择数据点。通常会选取模型预测置信度最低的数据点进行标注,因为这些数据是模型当前“最不确定”的部分,学习这些数据可以最大限度地提升模型性能。

  • 最大熵(Maximum Entropy):选择预测熵值最高的样本,反映了模型对该样本最不确定。
  • 最小置信度(Least Confidence):选择模型预测置信度最低的样本。
  • 最大边际(Margin Sampling):选择模型对前两类预测的置信度差最小的样本,适用于二分类问题。

    (2) 多样性采样(Diversity Sampling)

        多样性采样确保选取的数据样本具有代表性,而不是集中于模型“迷惑”的某些特定样本。在这种方法中,选取的数据通常是那些相互之间相似度较低的数据点。这样可以确保模型在全局上得到良好的训练,而不是仅在某一子集上表现良好。

        常见

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值