AtCoder Grand Contest 005 D - K Perm Counting

4 篇文章 0 订阅

AtCoder Grand Contest 005 D - ~K Perm Counting

https://atcoder.jp/contests/agc005/tasks/agc005_d

首先想到如何去容斥,假设任意钦定i个非法点的选择方案是dp[i]

那么 ans= ∑ i = 0 n ( − 1 ) n ∗ d p [ i ] ∗ f a c [ i ] \sum_{i=0}^{n}(-1)^n*dp[i]*fac[i] i=0n(1)ndp[i]fac[i]

然后我们考虑如何去求出这个dp[i]

我们可以通过列出二分图来分析,第i个点非法的意思也就是他选了i-k或者选了i+k

我们就会发现互相影响的不能选的其实是一条链,从i,i+k,i+2k…这样一直延续下去

于是我们可以把每条链单独拿出来,f[i,j,0]为链的前i条边选了j条边且第i条边没选的方案数,1为选了的

然后这条链最后选了i条的方案数就是f[len-1,i,0]+f[len-1,i,1]

然后上一条链得到的方案数是dp[(cnt&1)^1] [0-n] ,那么新增一条链,就枚举f [len-1,0-len-1]去更新整个dp数组

由于,由于$\sum {len} $ =2*n,那么实际复杂度就是 O ( n 2 ) O(n^2) O(n2)

写了100+行某牛逼网友博客27行就写完了。。。等下去学习一下

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

const int maxl=2010;
const int mod=924844033;

int n,m,k,cnt,tot,cas;ll ans;
int a[maxl];
ll dp[2][maxl],fac[maxl];
ll f[maxl][maxl][2];
bool vis[maxl*2];
char s[maxl];

inline void prework()
{
	scanf("%d%d",&n,&k);
	fac[0]=1;
	for(int i=1;i<=n;i++)
		fac[i]=fac[i-1]*i%mod;
	for(int i=1;i<=2*n;i++)
		vis[i]=false;
}

inline void add(ll &x,ll y){x+=y;if(x>=mod) x-=mod;}

inline int dfs(int i,int len)
{
	vis[i]=true;
	if(i<=n)
	{
		if(i+k>n || vis[i+k+n])
			return len;
		else
			return dfs(i+k+n,len+1);
	}
	else
	{
		if(i-n+k>n || vis[i-n+k])
			return len;
		else
			return dfs(i-n+k,len+1);
	}
}

inline void calc(int len)
{
	for(int i=1;i<=len-1;i++)
		for(int j=0;j<=i;j++)
			f[i][j][0]=f[i][j][1]=0;
	f[0][0][0]=1;f[0][0][1]=0;
	for(int i=0;i<=len-2;i++)
		for(int j=0;j<=i;j++)
		{
			add(f[i+1][j][0],f[i][j][0]);
			add(f[i+1][j+1][1],f[i][j][0]);
			add(f[i+1][j][0],f[i][j][1]);
		}
}

inline void mainwork()
{
	dp[0][0]=1;cnt=0;
	for(int i=1;i<=n;i++)
	if(!vis[i])
	{
		int len=0;
		if(i-k>0 && !vis[i-k+n])
		{
			vis[i-k+n]=true;
			len=dfs(i,2);			
		}
		else
			len=dfs(i,1);
		calc(len);++cnt;int d=cnt&1;
		for(int j=0;j<=n;j++)
			dp[d][j]=0;
		for(int j=0;j<=len-1;j++)
			for(int l=n;l-j>=0;l--)	
				add(dp[d][l],dp[d^1][l-j]*(f[len-1][j][0]+f[len-1][j][1])%mod);
	}
	ans=0;
	for(int i=0;i<=n;i++)
	if(i&1)
		ans=(ans-fac[n-i]*dp[cnt&1][i]%mod+mod)%mod;
	else
		ans=(ans+fac[n-i]*dp[cnt&1][i]%mod)%mod;
}

inline void print()
{
	printf("%lld\n",ans);
}

int main()
{
	int t=1;
	//scanf("%d",&t);
	for(cas=1;cas<=t;cas++)
	{
		prework();
		mainwork();
		print();
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值