看题半天没看懂意思,以为就是判断是否有凸包结果。。。。看了题解才知道,是要确定一个凸包是否唯一,即不能通过新增点变成新的凸包,也就是凸包的每条边上至少有3个点。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cmath>
#define maxl 1010
#define eps 1e-8
using namespace std;
inline int sgn(double x)
{
if(x>-eps && x<eps) return 0;
if(x<0) return -1;
else return 1;
}
struct point
{
double x,y;
point(double a=0,double b=0)
{
x=a;y=b;
}
point operator - (const point &b)const
{
return point(x-b.x,y-b.y);
}
bool operator == (const point &b)const
{
return sgn(x-b.x)==0 && sgn(y-b.y)==0;
}
bool operator != (const point &b)const
{
return sgn(x-b.x)!=0 || sgn(y-b.y)!=0;
}
inline double norm()
{
return sqrt(x*x+y*y);
}
};
inline double dot(const point &a,const point &b)
{
return a.x*b.x+a.y*b.y;
}
inline double det(const point &a,const point &b)
{
return a.x*b.y-a.y*b.x;
}
struct polygon_convex
{
vector<point> P;
polygon_convex(int size=0)
{
P.resize(size);
}
};
inline bool cmp(const point &a,const point &b)
{
if(sgn(a.x-b.x)==0)
return sgn(a.y-b.y)<0;
return sgn(a.x-b.x)<0;
}
polygon_convex convex_hull(vector<point> a)
{
polygon_convex res(2*a.size()+5);
sort(a.begin(),a.end(),cmp);
a.erase(unique(a.begin(),a.end()),a.end());
int m=0,l=a.size();
for(int i=0;i<a.size();i++)
{
while(m>1 && sgn(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2]))<=0)
--m;
res.P[m++]=a[i];
}
int k=m;
for(int i=int(a.size())-2;i>=0;i--)
{
while(m>k && sgn(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2]))<=0)
--m;
res.P[m++]=a[i];
}
res.P.resize(m);
if(a.size()>1)
res.P.resize(m-1);
return res;
}
int n;
vector<point> a;
bool ans;
inline void prework()
{
a.clear();
scanf("%d",&n);
point p;
for(int i=1;i<=n;i++)
{
scanf("%lf%lf",&p.x,&p.y);
a.push_back(p);
}
}
inline bool point_on_seg(point &a,point &b,point &c)
{
return sgn(det(a-b,a-c))==0 && sgn(dot(a-b,a-c))<=0;
}
inline void mainwork()
{
ans=true;
polygon_convex res=convex_hull(a);
if(res.P.size()<3)
{
ans=false;
return;
}
res.P.push_back(res.P[0]);
bool flag;int l=res.P.size(),l2=a.size();
for(int i=1;i<l && ans;i++)
{
int num=0;
for(int j=0;j<l2;j++)
if(point_on_seg(a[j],res.P[i],res.P[i-1]))
num++;
if(num<3)
ans=false;
}
}
inline void print()
{
if(ans)
puts("YES");
else
puts("NO");
}
int main()
{
int t;
scanf("%d",&t);
for(int i=1;i<=t;i++)
{
prework();
mainwork();
print();
}
return 0;
}
上面那个由于n=1000,所以直接n方求每条边上多少点了了,其实也可以O(n)求
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cmath>
#define maxl 1010
#define eps 1e-8
using namespace std;
inline int sgn(double x)
{
if(x>-eps && x<eps) return 0;
if(x<0) return -1;
else return 1;
}
struct point
{
double x,y;
point(double a=0,double b=0)
{
x=a;y=b;
}
point operator - (const point &b)const
{
return point(x-b.x,y-b.y);
}
bool operator == (const point &b)const
{
return sgn(x-b.x)==0 && sgn(y-b.y)==0;
}
bool operator != (const point &b)const
{
return sgn(x-b.x)!=0 || sgn(y-b.y)!=0;
}
inline double norm()
{
return sqrt(x*x+y*y);
}
};
inline double dot(const point &a,const point &b)
{
return a.x*b.x+a.y*b.y;
}
inline double det(const point &a,const point &b)
{
return a.x*b.y-a.y*b.x;
}
struct polygon_convex
{
vector<point> P;
polygon_convex(int size=0)
{
P.resize(size);
}
};
int n;
int num[maxl];
vector<point> a;
bool ans;
inline bool cmp(const point &a,const point &b)
{
if(sgn(a.x-b.x)==0)
return sgn(a.y-b.y)<0;
return sgn(a.x-b.x)<0;
}
inline bool point_on_seg(point &a,point &b,point &c)
{
return sgn(det(a-b,a-c))==0 && sgn(dot(a-b,a-c))<=0;
}
polygon_convex convex_hull(vector<point> a)
{
polygon_convex res(2*a.size()+5);
sort(a.begin(),a.end(),cmp);
a.erase(unique(a.begin(),a.end()),a.end());
int m=0,l=a.size();
for(int i=0;i<a.size();i++)
{
num[m]=1;
while(m>1 && sgn(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2]))<=0)
{
if(point_on_seg(res.P[m-1],a[i],res.P[m-2]))
num[m-1]+=num[m],num[m]=0;
else
num[m-1]=num[m],num[m]=0;
--m;
}
res.P[m++]=a[i];
}
int k=m;
for(int i=int(a.size())-2;i>=0;i--)
{
num[m]=1;
while(m>k && sgn(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2]))<=0)
{
if(point_on_seg(res.P[m-1],a[i],res.P[m-2]))
num[m-1]+=num[m],num[m]=0;
else
num[m-1]=num[m],num[m]=0;
--m;
}
res.P[m++]=a[i];
}
res.P.resize(m);
if(a.size()>1)
res.P.resize(m-1);
return res;
}
inline void prework()
{
a.clear();
scanf("%d",&n);
memset(num,0,sizeof(int)*(n+1));
point p;
for(int i=1;i<=n;i++)
{
scanf("%lf%lf",&p.x,&p.y);
a.push_back(p);
}
}
inline void mainwork()
{
ans=true;
polygon_convex res=convex_hull(a);
if(res.P.size()<3)
{
ans=false;
return;
}
res.P.push_back(res.P[0]);
bool flag;int l=res.P.size(),l2=a.size();
/*for(int i=1;i<l && ans;i++)
{
int num=0;
for(int j=0;j<l2;j++)
if(point_on_seg(a[j],res.P[i],res.P[i-1]))
num++;
if(num<3)
ans=false;
} */
for(int i=1;i<l;i++)
if(num[i]<2)
ans=false;
}
inline void print()
{
if(ans)
puts("YES");
else
puts("NO");
}
int main()
{
int t;
scanf("%d",&t);
for(int i=1;i<=t;i++)
{
prework();
mainwork();
print();
}
return 0;
}