数学期望值

数学求期望的计算公式:
(1) 离散型
定义  设离散型随机变量 X 的分布律为 P { X = x k } = p k , k = 1 , 2 , ⋯ 若级数 ∑ k = 1 ∞ x k p k 绝对收敛 , 则称级数 ∑ k = 1 ∞ x k p k 为随机变量 X 的数学期望 , 记为 E ( X ) . 即 E ( X ) = ∑ k = 1 ∞ x k p k . \begin{array}{c} {\color{Red} 定义} \ 设离散型随机变量 \boldsymbol{X} 的分布律为\\ P\{X = x_{k}\} = p_{k}, \quad k = 1,2, \cdots\\ 若级数 \sum\limits_{k = 1}^{\infty} x_{k} p_{k} 绝对收敛, 则称级数 \sum\limits_{k = 1}^{\infty} x_{k} p_{k} \\为随机变量 X 的数学期望, 记为 E(X) . \\ 即E(X) = \sum\limits_{k = 1}^{\infty} x_{k} p_{k} . \end{array} 定义 设离散型随机变量X的分布律为P{X=xk}=pk,k=1,2,若级数k=1xkpk绝对收敛,则称级数k=1xkpk为随机变量X的数学期望,记为E(X).E(X)=k=1xkpk.

(2) 连续型

定义  设连续型随机变量 X 的概率密度为 f ( x ) , 若积分 ∫ − ∞ + ∞ x f ( x ) d x 绝对收敛 , 则称积分 ∫ − ∞ + ∞ x f ( x ) d x 的值为随机 变量 X 的数学期望 , 记为 E ( X ) . 即 E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x . \begin{array}{c} {\color{Red} 定义} \ 设连续型随机变量 \boldsymbol{X} 的概率密度为f(x),\\ 若积分 \int_{-\infty}^{+\infty} xf(x)dx \\ 绝对收敛,则称积分\int_{-\infty}^{+\infty} xf(x)dx 的值为随机\\变量\boldsymbol{X}的数学期望,记为 E(X).\\ 即E(X) = \int_{-\infty}^{+\infty} xf(x)dx . \end{array} 定义 设连续型随机变量X的概率密度为f(x),若积分+xf(x)dx绝对收敛,则称积分+xf(x)dx的值为随机变量X的数学期望,记为E(X).E(X)=+xf(x)dx.

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值