什么是模型训练中的 特征提取,如何对光伏发电预测中的特征进行提取

🔍 什么是模型训练中的“特征提取”

  • 定义:特征提取是从原始数据中提炼出对预测或分类最有用的信息的过程。它的目标是去掉冗余和噪声,保留能最好反映数据规律的特征。

  • 作用

    • 降低数据维度,减少计算量

    • 提高模型的泛化能力

    • 让模型更容易捕捉数据的内在模式

  • 方法类型

    1. 人工特征工程:基于领域知识手动构造特征(如天气数据中的日照时长、温差等)

    2. 自动特征提取:用算法(如PCA、CNN、AutoEncoder)自动学习特征

☀ 光伏发电预测中的特征提取思路

光伏发电功率受气象条件 + 设备状态 + 时间因素等多种变量影响,因此特征提取要覆盖这几类信息。

1. 气象类特征

  • 太阳辐照度(水平面、倾斜面)

  • 温度(环境温度、组件背板温度)

  • 风速、风向

  • 湿度、气压

  • 云量、能见度

这些特征可直接来自气象站或数值天气预报(NWP)数据。

2. 时间类特征

  • 年、月、日、小时、分钟

  • 一天中的太阳高度角、方位角

  • 季节性周期(如夏季日照长、冬季短)

3. 历史功率特征

  • 过去一段时间的发电功率序列(如过去 15 分钟、1 小时、1 天)

  • 滑动窗口统计值(均值、最大值、最小值、变化率)

4. 设备状态特征

  • 组件效率衰减系数

  • 逆变器效率

  • 维护/故障标记

🛠 常用特征提取方法(光伏预测场景)

方法适用场景优点示例
PCA(主成分分析)高维气象数据降维去冗余、保留主要信息将多种辐照度指标压缩成1-2个主成分
CNN 卷积神经网络提取空间特征自动学习局部模式从多通道气象数据中提取空间相关性
LSTM / BiLSTM提取时间依赖特征适合时序预测捕捉功率随时间变化的趋势
多特征融合综合多种特征提高预测精度倾斜面辐照度 + 温度特征 + 时序特征
特征选择算法去掉无关特征提高效率互信息、递归特征消除(RFE)

📌 光伏预测特征提取的一个典型流程

  1. 数据收集:历史功率 + 气象数据 + 设备参数

  2. 数据清洗:去除缺失值、异常值

  3. 特征构造

    • 计算倾斜面辐照度(基于太阳位置模型)

    • 生成时间周期特征(正弦/余弦编码)

    • 计算历史功率的滑动窗口统计值

  4. 特征选择/降维:用PCA、相关系数、特征重要性排序等方法

  5. 输入模型:CNN-LSTM、XGBoost-LSTM等混合模型常用于光伏预测

参考:

1​ blog.csdn.nethttps://blog.csdn.net/2301_77509548/article/details/140928584  2 www.hanspub.orghttps://www.hanspub.org/journal/paperinformation?paperid=101379
3​ www.opticsjournal.nethttps://www.opticsjournal.net/Articles/OJd9203fa4910a8b9e/Abstract

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值