如何进行CNN-LSTM深度学习预测 -以预测光伏出力为例

先来一句官话:

CNN-LSTM模型结合了卷积神经网络(CNN)和长短期记忆网络(LSTM)的优势,适用于光伏出力预测。CNN擅长提取数据的空间特征,而LSTM擅长处理序列数据,捕捉时间依赖性。这使得CNN-LSTM模型能够有效地处理光伏发电数据的时空特性,提高预测精度。

近期的研究表明,基于CNN-LSTM的光伏发电功率预测模型已经被提出并应用于实际场景。例如,中国石化申请了一项基于注意力机制的CNN-LSTM混合神经网络模型的光伏电站负荷预测方法,该方法结合了基于注意力机制的卷积神经网络和长短期记忆网络,以及特征向量提取、注意力机制推断和下采样等技术,以提高负荷预测的准确性。

CNN-LSTM模型是一种结合了卷积神经网络(CNN)和长短期记忆网络(LSTM)的深度学习模型。CNN擅长提取图像数据中的空间特征,而LSTM则擅长处理序列数据中的时间依赖关系。在光伏发电预测中,CNN可以用来提取气象数据和光伏发电量之间的空间相关性,而LSTM可以用来捕捉这些数据随时间变化的动态特性。

如何编程求解?

这是一个非常好的问题,原理都知道怎么编程!

首先说一下数据:

data是含有特征列以及要预测的数据的,data1是只含有特征列的:话不多说看图说话;

接下来就是紧张刺激的编程环节

我们需要怎么办!  具体来说前期就是以下三个步骤,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值