# 非短篇预警 #
前言
研究正整数的性质都可以叫数论,整数是数学中最简单的结构,但数论中所产生的问题在OI中产生的问题也是最多最复杂的(即使代码能力再强),本文将讲述数论中最简单的板块——素数
前置知识
整除
定义:如果∈Z,则称b整除a或a被b整除,记为a|b,此时a称为b的倍数,b为a的约数;
注意:0能被任何整数整除
取整
表示向下取整,在c++中通常用floor表示
floor(a/b)
表示向上取整,在c++中通常使用ceil表示
ceil(a/b)
=,a%b=a-b;
最大公因数
在信息学竞赛中通常使用gcd(a,b)来表示a和b最大公因数,同时用lcm(a,b)表示a,b的最小公倍数
lcm(a,b)=ab/gcd(a,b),gcd(a,b-a),gcd(a,0)=a,若c|a,c|b,则gcd(a,b)=cgcd(a/c,b/c);
以上为最大公因数的常用性质;
求最大公因数的方法
欧几里得算法(辗转相除法)
原理:gcd(a,b)=gcd(b,a%b) 证明略
时间复杂度:0(log(max(a,b)))
代码实现
//法一
int gcd(int a,int b)
{
return b?gcd(b,a%b):a;
}
//法二
int gcd(int a,int b)
{
if(b)
{
return gcd(b,a%b);
}
else return a;
}
此方法缺点:取余(%)不好计算(比如高精度)
更相减损数
若a,b均为偶数 gcd(a,b)=2gcd(a/2,b/2)
若只有a为偶数 gcd(a,b)=gcd(a/2,b),只有b为偶数 gcd(a,b)=gcd(a,b/2)
若均不为偶数,gcd(a,b)=gcd(a,a-b)(a>b)
[SDOI2009] SuperGCD - 洛谷 GCD LCM - 洛谷
前者较难后者较易。
至此,前置知识基本结束
素数的定义
顾名思义,素数指的就是只能被1和其本身向整除的数(此数大于2且为整数),素数理论上有无数个。
素数的判定
我们可以通过枚举2-n判断是否存在n的因数,由此便得到了判断素数的朴素版
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n;
bool vis=1;
cin>>n;
if(n==1) //特判1不为质数
{
cout<<"NO"<<endl;
return 0;
}
if(n==2) //特判2是质数
{
cout<<"YES"<<endl;
return 0;
}
for(int i=2;i<=n;i++)//从2开始枚举
{
if(n%i==0)
{
vis=false;
break;
}
}
if(vis==false)
{
cout<<"NO"<<endl;
}
else
{
cout<<"YES"<<endl;
}
return 0;
}
此时的时间复杂度为O(n) 当数据大时容易超时,so我们要进行优化
我们可以轻松知道不超过n的素数有个,合数一定有不超过个因数,由此我们可以进行优化只枚举1-。
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n;
bool vis=1;
cin>>n;
if(n==1) //ÌØÅÐ1²»ÎªÖÊÊý
{
cout<<"NO"<<endl;
return 0;
}
for(int i=2;i*i<=n;i++)//´Ó2¿ªÊ¼Ã¶¾Ù
{
if(n%i==0)
{
vis=false;
break;
}
}
if(vis==false)
{
cout<<"NO"<<endl;
}
else
{
cout<<"YES"<<endl;
}
return 0;
}
此时时间复杂度为
唯一分解定理(俗称分解质因数)
此处只讲定义:任意一个正整数N一定能唯一的写成 N=至于证明小学老师应该讲过,此处不讲
分解质因数的原理不用过多阐述,直接上代码:
int pi[N],pcnt[N],tot; //pi表示质因子,pcnt表示其指数,tot表示个数
void decompose(int x)
{
for(int i=2;i*i<=x;i++)
{
if(x%i==0)
{
pi[++tot]=i;
while(x%i==0) ++pcnt[tot],x/=i; //求该质数的指数
}
}
if(x>1) pl[++tot]=x,pcnt[tot]=1;//若剩余为质数则需要加入
}
求解1-n的质数个数
埃氏筛
原理:用已知质数和已知合数去筛取其倍数,最终得到的个数即为质数个数。以2(质数)为例,在循环中删去4,6,8.......
代码如下,可结合代码来理解
int np[N],pl[N],tot;//np表示此数是否被标记,最终结果就是求1-n中哪些np[i]的值为0
void aishi()
{
np[1]=1;
for(int i=2;i<=n;i++)
{
if(!np[i])
{
pl[++tot]=i;
for(int j=2*i;j<=n;j+=i)//将1-n中所以其倍数筛去
{
np[j]=1;
}
}
}
}
通过代码我们可以明显感觉到这个算法的时间复杂度较大,理由是:很多数都被筛了多变,比如(8),循环“2”和“4”时都筛去该数增加了时间复杂度。
我们该如何优化呢?就是改为线性计算,每个合数都有且只被筛去一边由此我们便引出了著名的线性筛法——“欧拉筛”
欧拉筛
由于本人讲的太菜,此处讲解摘自《算法竞赛进阶指南》李煜东:
摘毕;
用本人的话来理解就是:该算法通过质因子来优化筛法从而达到线性来减小时间复杂度,即每个合数被且只被最小的质因数筛去。
代码如下可结合代码理解:
int np[N],pl[N],cnt;
void oula(int n)
{
np[1]=1;
for(int i=2;i<=n;i++)
{
if(!np[i])
{
pl[++cnt]=i;
}
int x;
for(int j=1;x*pl[j]<=n;j++)
{
np[x]=1;
if(i%pl[j]==0) break;
}
}
}
欧拉筛的重要性
欧拉筛的重要性不言而喻,该代码可以求出最小质因数,且因为欧拉筛为一个线性筛法,因此此份代码为线性筛的基础模版,未来有很多的线性筛法本质是由该算法衍生而成(例如求解1-n的莫比乌斯函数,欧拉函数等等)。
欧拉函数
从上文知道欧拉筛可用于求解1-n的欧拉函数,在此,我们讲解一下欧拉函数。
欧拉函数定义为不超过n的正整数中与n互质的数的个数
通过该定义我们可以知道=n*,此公式中p表示n的质因子。有该式子,我们可以知道如何求解1个数的欧拉函数,代码如下:
int oula(int n)
{
int res=n,t=n;
for(int i=2;i*i<=t;i++)
{
if(t%i== 0)
{
res=res/i*(i-1);
while(t%i==0) t=t/i;
}
}
if(t>1) res=res/t*(t-1);
return res;
}
通常情况下我们一般很少求解1个数的欧拉函数,一般求解1-n的欧拉函数值,如果在循环n次,时间复杂度就变得很大了,此处就要求我们的计算要为线性计算,所以我们就引出了欧拉函数的线性筛;
欧拉函数的线性筛
通过上文=n*这个式子,我们得到了求解1个数的欧拉函数值,俗话说“万变不离其宗”,所以求解1-n的欧拉函数也要通过这个式子来求解,对这个式子进行轻微的变形,我们便可以得到下面的式子:
注意:otherwise表示其余,以后会经常使用
通过上文所提及的线性欧拉筛,我们便可以得到p的值(p仍表示质因子),从而可以在接近O(n)的时间复杂度下进行预处理,代码如下:
#include<bits/stdc++.h>
using namespace std;
conat int N=1e5;
int phi[N],primes[N];
bool vis[N]
void init(long long n)
{
vis[1]=1;
phi[1]=1;
for(long long i=2;i<=n;i++)
{
if(!vis[i])primes[++cnt]=i,phi[i]=i-1;
for(long long j=1;j<=cnt&&i*primes[j]<=n;j++)
{
vis[i*primes[j]]=1;
phi[i*primes[j]]=phi[i]*(primes[j]-1);
if(i%primes[j]==0)
{
phi[i*primes[j]]=phi[i]*primes[j];
break;
}
}
}
}
代码应该很好理解,我们仔细观看该代码,不难发现这代码和上文所述的欧拉筛有那么亿点点相似,这也从侧面论证了欧拉筛为基础的线性筛的说法。
至此有关素数的内容就到此为止了。
结语
通过上文,我们可以清楚的知道素数这个板块的内容连续性比较强,素数也是在算法竞赛中最简单并基础的一个板块,接下来还有同余等十分重要的数论内容。
注意:本文为学术性文章(学习随笔),支持学术共享,但请备注来源。
如有侵权,请及时联系,谢谢!!!
最后祝各位节日快乐!!!
参考资料
1.《算法竞赛进阶指南》李煜东
END