在二维坐标系中,一个位置向量的旋转公式可以由三角函数的几何意义推出。
向左转|向右转
比如上图所示是位置向量R逆时针旋转角度B前后的情况。
在左图中,我们有关系:
x0 = |R| * cosA => cosA = x0 / |R|
y0 = |R| * sinA => sinA = y0 / |R|
在右图中,我们有关系:
x1 = |R| * cos(A+B)
y1 = |R| * sin(A+B)
其中(x1, y1)就是(x0, y0)旋转角B后得到的点,也就是位置向量R最后指向的点。我们展开cos(A+B)和sin(A+B),得到:
x1 = |R| * (cosAcosB - sinAsinB)
y1 = |R| * (sinAcosB + cosAsinB)
现在把 cosA = x0 / |R| 和 sinA = y0 / |R| 代入上面的式子,得到:
x1 = |R| * (x0 * cosB / |R| - y0 * sinB / |R|) => x1 = x0 * cosB - y0 * sinB
y1 = |R| * (y0 * cosB / |R| + x0 * sinB / |R|) => y1 = x0 * sinB + y0 * cosB
这样我们就得到了二维坐标下向量围绕圆
ie 滤镜 向量旋转公式:
最新推荐文章于 2024-05-01 17:31:26 发布
本文介绍了二维向量旋转的数学原理,包括逆时针和顺时针旋转公式,并探讨了旋转矩阵的概念。给出了二维旋转变换矩阵的表示,并举例说明如何对向量进行旋转变换,特别指出在IE滤镜中可能的应用。
摘要由CSDN通过智能技术生成