http://codeforces.com/problemset/problem/14/D
题意:
找出两条路径的长度乘积最大,要保证这两条路径没有公共的点,如果找不到就输出0。
思路:
枚举每一条边,删掉这条边,对于这两个点进行dfs,从每个点开始走找出两条最长的路,path就是这两条路之和。两个点的path相乘判断能不能更新答案。
要小心的就是要从每个点找出两条路,不能直接找下去。这里调试了好久才发现。。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
#define M 209
int vis[M];
vector<int> G[M];
int n;
int temp1,temp2;
int ans;
int s;
int dfs(int a,int b)
{
int sum = 0, max1 = 0,max2 = 0; //记录两边的和、最大的、第二大的
for(int i = 0;i < G[a].size();i++)
{
if(G[a][i] != b)
{
sum = max(dfs(G[a][i],a),sum); //两条边的和
if(s > max1) //更新最大
{
max2 = max1;
max1 = s;
}
else if(s > max2) //不能更新最大的但能更新第二大的。
{
max2 = s;
}
}
}
s = max1 + 1; //边的长度+1
sum = max(sum,max1+max2);
return sum;
}
int main()
{
scanf("%d",&n);
{
for(int i = 0;i < n;i++) G[i].clear();
ans = 0;
for(int i = 0;i < n-1;i++)
{
int a,b;
scanf("%d %d",&a,&b);
G[a].push_back(b);
G[b].push_back(a);
}
for(int i = 1;i <= n;i++)
for(int j = 0;j < G[i].size();j++)
{
memset(vis,0,sizeof(vis));
temp1 = dfs(i,G[i][j]);
temp2 = dfs(G[i][j],i);
ans = max(ans,temp1*temp2);
}
printf("%d\n",ans);
}
return 0;
}
/*
7
1 6
4 6
5 6
6 7
2 6
3 7
*/