[CFF认证]201612-3炉石传说(C++)

问题描述
试题编号: 201612-3
试题名称: 炉石传说
时间限制: 1.0s
内存限制: 256.0MB
问题描述:
问题描述
  《炉石传说:魔兽英雄传》(Hearthstone: Heroes of Warcraft,简称炉石传说)是暴雪娱乐开发的一款集换式卡牌游戏(如下图所示)。游戏在一个战斗棋盘上进行,由两名玩家轮流进行操作,本题所使用的炉石传说游戏的简化规则如下:

  * 玩家会控制一些角色,每个角色有自己的生命值和攻击力。当生命值小于等于 0 时,该角色死亡。角色分为英雄和随从。
  * 玩家各控制一个英雄,游戏开始时,英雄的生命值为 30,攻击力为 0。当英雄死亡时,游戏结束,英雄未死亡的一方获胜。
  * 玩家可在游戏过程中召唤随从。棋盘上每方都有 7 个可用于放置随从的空位,从左到右一字排开,被称为战场。当随从死亡时,它将被从战场上移除。
  * 游戏开始后,两位玩家轮流进行操作,每个玩家的连续一组操作称为一个回合。
  * 每个回合中,当前玩家可进行零个或者多个以下操作:
  1) 召唤随从:玩家召唤一个随从进入战场,随从具有指定的生命值和攻击力。
  2) 随从攻击:玩家控制自己的某个随从攻击对手的英雄或者某个随从。
  3) 结束回合:玩家声明自己的当前回合结束,游戏将进入对手的回合。该操作一定是一个回合的最后一个操作。
  * 当随从攻击时,攻击方和被攻击方会同时对彼此造成等同于自己攻击力的伤害。受到伤害的角色的生命值将会减少,数值等同于受到的伤害。例如,随从 X 的生命值为 H X、攻击力为 A X,随从 Y 的生命值为 H Y、攻击力为 A Y,如果随从 X 攻击随从 Y,则攻击发生后随从 X 的生命值变为 H X - A Y,随从 Y 的生命值变为 H Y - A X。攻击发生后,角色的生命值可以为负数。
  本题将给出一个游戏的过程,要求编写程序模拟该游戏过程并输出最后的局面。
输入格式
  输入第一行是一个整数 n,表示操作的个数。接下来 n 行,每行描述一个操作,格式如下:
  <action> <arg1> <arg2> ...
  其中<action>表示操作类型,是一个字符串,共有 3 种:summon表示召唤随从,attack表示随从攻击,end表示结束回合。这 3 种操作的具体格式如下:
  * summon <position> <attack> <health>:当前玩家在位置<position>召唤一个生命值为<health>、攻击力为<attack>的随从。其中<position>是一个 1 到 7 的整数,表示召唤的随从出现在战场上的位置,原来该位置及右边的随从都将顺次向右移动一位。
  * attack <attacker> <defender>:当前玩家的角色<attacker>攻击对方的角色 <defender>。<attacker>是 1 到 7 的整数,表示发起攻击的本方随从编号,<defender>是 0 到 7 的整数,表示被攻击的对方角色,0 表示攻击对方英雄,1 到 7 表示攻击对方随从的编号。
  * end:当前玩家结束本回合。
  注意:随从的编号会随着游戏的进程发生变化,当召唤一个随从时,玩家指定召唤该随从放入战场的位置,此时,原来该位置及右边的所有随从编号都会增加 1。而当一个随从死亡时,它右边的所有随从编号都会减少 1。任意时刻,战场上的随从总是从1开始连续编号。
输出格式
  输出共 5 行。
  第 1 行包含一个整数,表示这 n 次操作后(以下称为 T 时刻)游戏的胜负结果,1 表示先手玩家获胜,-1 表示后手玩家获胜,0 表示游戏尚未结束,还没有人获胜。
  第 2 行包含一个整数,表示 T 时刻先手玩家的英雄的生命值。
  第 3 行包含若干个整数,第一个整数 p 表示 T 时刻先手玩家在战场上存活的随从个数,之后 p 个整数,分别表示这些随从在 T 时刻的生命值(按照从左往右的顺序)。
  第 4 行和第 5 行与第 2 行和第 3 行类似,只是将玩家从先手玩家换为后手玩家。
样例输入
8
summon 1 3 6
summon 2 4 2
end
summon 1 4 5
summon 1 2 1
attack 1 2
end
attack 1 1
样例输出
0
30
1 2
30
1 2
样例说明
  按照样例输入从第 2 行开始逐行的解释如下:
  1. 先手玩家在位置 1 召唤一个生命值为 6、攻击力为 3 的随从 A,是本方战场上唯一的随从。
  2. 先手玩家在位置 2 召唤一个生命值为 2、攻击力为 4 的随从 B,出现在随从 A 的右边。
  3. 先手玩家回合结束。
  4. 后手玩家在位置 1 召唤一个生命值为 5、攻击力为 4 的随从 C,是本方战场上唯一的随从。
  5. 后手玩家在位置 1 召唤一个生命值为 1、攻击力为 2 的随从 D,出现在随从 C 的左边。
  6. 随从 D 攻击随从 B,双方均死亡。
  7. 后手玩家回合结束。
  8. 随从 A 攻击随从 C,双方的生命值都降低至 2。
评测用例规模与约定
  * 操作的个数0 ≤ n ≤ 1000。
  * 随从的初始生命值为 1 到 100 的整数,攻击力为 0 到 100 的整数。
  * 保证所有操作均合法,包括但不限于:
  1) 召唤随从的位置一定是合法的,即如果当前本方战场上有 m 个随从,则召唤随从的位置一定在 1 到 m + 1 之间,其中 1 表示战场最左边的位置,m + 1 表示战场最右边的位置。
  2) 当本方战场有 7 个随从时,不会再召唤新的随从。
  3) 发起攻击和被攻击的角色一定存在,发起攻击的角色攻击力大于 0。
  4) 一方英雄如果死亡,就不再会有后续操作。
  * 数据约定:
  前 20% 的评测用例召唤随从的位置都是战场的最右边。
  前 40% 的评测用例没有 attack 操作。
  前 60% 的评测用例不会出现随从死亡的情况。

答案:果然做题之前还是要先想清楚在开始写,这道题不涉及复杂的算法,但是要考虑到各种情况。一步一步模拟玩家操作就可以了,具体过程可看代码注释。一次提交就通过,总算心情好了点。


#include <iostream>
#include <string>
using namespace std;
struct man{
	int health;//生命力
	int attack;//攻击值
};//角色定义
int main(){
	int n;
	cin >> n;
	bool player = 0;//0表示先手玩家,1表示后手玩家
	man first[8] = {0};//先手玩家的战场
	man second[8] = {0};//后手玩家的战场
	first[0].health = 30;
	first[0].attack = 0;
	second[0].health = 30;
	second[0].attack = 0;//设置先手玩家和后手玩家的英雄
	int firstNum = 0, secondNum = 0;//先手玩家和后手玩家的随从个数
	int winer = 0;
	for (int i = 0; i < n; i++){
		string action;
		cin >> action;
		if (action == "summon"){
			int a, b, c;
			cin >> a >> b >> c;
			if (player == 0){
				int i = firstNum;
				while (i >= a){
					first[i + 1] = first[i];
					i--;
				}
				first[a].health = c;
				first[a].attack = b;
				firstNum++;
			}
			else{
				int i = secondNum;
				while (i >= a){
					second[i + 1] = second[i];
					i--;
				}
				second[a].health = c;
				second[a].attack = b;
				secondNum++;
			}
		}//召唤随从
		else if (action == "attack"){
			int attacker, defender;
			cin >> attacker >> defender;
			if (player == 0){
				first[attacker].health = first[attacker].health - second[defender].attack;
				second[defender].health = second[defender].health - first[attacker].attack;
				if (first[attacker].health <=0){
					int i = attacker;
					while (i < firstNum){
						first[i] = first[i + 1];
						i++;
					}
					firstNum--;
				}//攻击者死亡,从战场上删除
				if (second[defender].health <= 0){
					if (defender != 0){
						int i = defender;
						while (i < secondNum){
							second[i] = second[i + 1];
							i++;
						}
						secondNum--;
					}//如果防御者为随从,则从战场上删除
					else{
						winer = 1;
						break;
					}//如果防御者为英雄,则先手玩家获胜
				}//防御者死亡
			}
			else{
				second[attacker].health = second[attacker].health - first[defender].attack;
				first[defender].health = first[defender].health - second[attacker].attack;
				if (second[attacker].health <= 0){
					int i = attacker;
					while (i < secondNum){
						second[i] = second[i + 1];
						i++;
					}
					secondNum--;
				}//攻击者死亡,从战场上删除
				if (first[defender].health <= 0){
					if (defender != 0){
						int i = defender;
						while (i < firstNum){
							first[i] = first[i + 1];
							i++;
						}
						firstNum--;
					}//如果防御者为随从,则从战场上删除
					else{
						winer = -1;
						break;
					}//如果防御者为英雄,则后手玩家获胜
				}//防御者死亡
			}
		}//攻击
		else if (action == "end"){
			player = 1 - player;
		}//回合结束
	}
	cout << winer << endl;//输出胜利者
	cout << first[0].health << endl;
	if (firstNum == 0)
		cout << firstNum << endl;
	else{
		cout << firstNum << " ";
		for (int i = 1; i < firstNum ; i++)
			cout << first[i].health << " ";
		cout << first[firstNum].health << endl;
	}//先手玩家输出结束
	cout << second[0].health << endl;
	if (secondNum == 0)
		cout << secondNum << endl;
	else{
		cout << secondNum << " ";
		for (int i = 1; i < secondNum ; i++)
			cout << second[i].health << " ";
		cout << second[secondNum].health << endl;
	}//后手玩家输出结束
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值