JVM内存结构

JVM内存结构

1.运行时数据区

java运行时数据区包括5个部分:堆,虚拟机栈,本地方法栈,方法区,程序计数器

  • 程序计数器
    作用可以看做是当前线程执行的字节码的行号指示器。字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令。每一个线程都需要一个独立的程序计数器,线程私有,此区域是唯一一个不会产生OOM的区域

  • 虚拟机栈
    虚拟机栈也是线程私有的,虚拟机栈描述的是java方法执行的内存模型,每个方法执行的时候都会创建一个栈帧用于存储局部变量表,操作栈,动态链接与方法出口等信息。每一个方法被调用直至执行完成,就对应一个栈帧在栈中从入栈到出栈的整个过程。

    局部变量表中存储这编译期可知的各种基本数据类型(byte,short,int,long,double,float,char,boolean),对象引用和returnAddress类型(指向一条字节码指令的地址),局部变量表所需的内存空间在编译期间完成分配,当进入一个方法时,这个方法在栈帧中分配的局部变量的空间是确定的,在方法运行期间不会改变局部变量表的大小。

    这个区域会抛出两种异常:如果线程请求深度的栈深度大于虚拟机锁允许的深度,将会抛出StackOverflowError异常;如果虚拟机栈可以动态扩展,当申请不到内存时会抛出OOM异常。

  • 本地方法栈
    本地方法栈和虚拟机栈基本一样,区别在于虚拟机栈为虚拟机执行java方法服务,而本地方法栈则为虚拟机使用到的native方法服务

  • Java堆
    Java堆是Java虚拟机管理的内存最大的一块,Java堆是所有线程共享的一块内存区域,几乎所有的对象都分配在堆上。
    Java堆是垃圾收集器管理的主要区域,从内存回收角度上分为新生代和老年代,其中新生代又分为Eden区,From Survivor,To Survivor等,如果堆上没有内存空间完成实例分配,将会抛出OOM异常

  • 方法区
    方法区和堆一样是各个线程共享的区域,它用于存储已被虚拟机加载的类信息,常量,静态变量,字节码等数据。

    永久代只是方法区的一种实现形式,并不等于方法区
    这个区域主要的内存回收是针对常量池的回收和对类型的卸载
    当方法区无法满足内存分配需求时,将会抛出OOM异常
    运行时常量池是方法区的一部分,用于存放编译期生成的各种字面量和符号引用,这部分内容将在类加载后存储在运行时常量池中

    运行时常量池具有动态性,并非只有在编译期产生,也可以在运行期间把新常量放入到池中,例如String.intern()方法。intern方法的作用是:如果常量池中已经包含了一个等于此String对象的字符串,则返回代表池中的这个字符串的String对象;否则,将此String对象包含的字符串添加到常量池中,并返回此String对象的引用

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值