如何理解特征值为复数的情况

如何理解特征值为复数的情况

特征值与特征向量

特征值可定义为,若有 A x = λ x Ax=\lambda x Ax=λx,则称 x x x A A A的特征向量, λ \lambda λ为相应的特征值。这时我们可以发现,如果 λ λ λ是实数,那么矩阵 A A A对向量 x x x的作用,恰恰是将向量 x x x放大或缩小了一定倍数,而方向不变。如果特征值绝对值大于1,那么 x x x的长度将被放大(方向可能改变),如果特征值绝对值小于1,那么 x x x的长度被缩小(方向也可能改变)

特征向量在控制领域的意义

由于答主本科阶段学的是自动化专业,接下来用控制领域的知识进一步阐述特征向量相关知识。特征向量是什么呢?就是系统状态的某个特殊值。而根据线性定理,总可以将系统状态拆成不同特征向量的线性组合,所以也可以认为特征向量是系统状态的一个分量。在(离散)控制系统中,若 ϕ \phi ϕ是系统离散域的状态转移矩阵,假如某个时刻系统的状态 x x x,恰好等于特征向量的倍数,那么每过一拍后,新的状态 x ( n + 1 ) = ϕ x ( n ) = λ x ( n ) x(n+1)=\phi x(n)=\lambda x(n) x(n+1)=ϕx(n)=λx(n)。如果 λ \lambda λ的绝对值大于1,那么 x x x中的值将随时间推移而不断变大,如果 λ \lambda λ绝对值小于1,那么 x x x中的值将随时间推移而不断衰减。系统的输出也包括在系统状态中,因此如果 λ \lambda λ绝对值大于1,系统就是发散的。这也正是Z变换中的结论。

特征值为复数的情况

题主问的是特征值为复数的情况。当 λ \lambda λ为复数时,从数学的角度看,可以认为状态 x x x每经过一个控制节拍(经过一拍意味着系统经过了一次状态转移,下同),不仅长度发生改变,还产生了一个复平面内的旋转。那么复平面上的旋转,与实际的物理意义有什么对应关系呢?在我看来,可以这么理解:若选取合适坐标系,复平面中的值,其实部表征了当前物理量的大小,虚部象征了物理量转化(如能量转移)的趋势。以理想的LC串联电路为例:

电路工作过程为:若电感的感应电动势大于电容,则它给电容充能,否则电容给电感充能。由于没有能量的损耗,这个过程会持续到天荒地老。因此,若选取电容电压和电感电流构成一组系统状态,其离散系统状态转移矩阵的特征值就是“绝对值为1,而角度不为0”的一个复数。

举个例子,若电容为 1 F 1F 1F,电感为 1 H 1H 1H系统的初始状态(电容电压,电感电流)为 ( 1 V 1V 1V 0 A 0A 0A),但在虚平面上应表示成( 1 V 1V 1V i A iA iA),其实部为( 1 V 1V 1V 0 A 0A 0A),后续将进一步揭示这种表现形式的原因。
若选择合适的控制周期,使对应的离散系统状态转移矩阵 ϕ \phi ϕ的特征值为 i i i,即 e π 2 e^{\frac{\pi}{2}} e2π,那么经过一拍的时间后,系统状态变成了( i V iV iV − 1 A -1A 1A),取其实数部分,得物理状态( 0 V 0V 0V − 1 A -1A 1A),说明电容的能量全部转移到电感上了。再过一拍,系统状态为( − 1 V -1V 1V, − i A -iA iA), 取实部得物理状态( − 1 V -1V 1V, 0 A 0A 0A)。这样随着时间推移,接下来的系统状态为 ( − i V -iV iV, 1 A 1A 1A),( 1 V 1V 1V, i A iA iA) 等等,其实部为实际物理量,如此往复循环。

如果我们把控制周期缩短,则特征值将会改变。若特征值为 e π 4 e^{\frac{\pi}{4}} e4π,那么我们就可以更清楚地看到系统状态变化的过程如下表所示。可以看出,电容电压、电感电流都如正弦振荡般往复循环。

时间复平面上的状态值实数部分(电容电压、电感电流)角度表示
0( 1 V 1V 1V i A iA iA)( 1 V 1V 1V 0 A 0A 0A)( e 0 e^{0} e0 e π 2 e^{\frac{\pi}{2}} e2π)
1( 2 + 2 i 2 V \frac{\sqrt{2} +\sqrt{2}i }{2}V 22 +2 iV − 2 − 2 i 2 A -\frac{\sqrt{2} -\sqrt{2}i }{2}A 22 2 iA)( 2 2 V \frac{\sqrt{2}}{2}V 22 V − 2 2 A -\frac{\sqrt{2}}{2}A 22 A)( e π 4 e^{\frac{\pi}{4}} e4π e 3 π 4 e^{\frac{3\pi}{4}} e43π)
2( i V iV iV − 1 A -1A 1A)( 0 V 0V 0V − 1 A -1A 1A)( e π 2 e^{\frac{\pi}{2}} e2π e π e^{\pi} eπ)
3( − 2 − 2 i 2 V -\frac{\sqrt{2} -\sqrt{2}i }{2}V 22 2 iV − 2 + 2 i 2 A -\frac{\sqrt{2}+\sqrt{2}i }{2}A 22 +2 iA)( − 2 2 V -\frac{\sqrt{2}}{2}V 22 V − 2 2 A -\frac{\sqrt{2}}{2}A 22 A)( e 3 π 4 e^{\frac{3\pi}{4}} e43π e 5 π 4 e^{\frac{5\pi}{4}} e45π)
4( − 1 V -1V 1V − i A -iA iA)( − 1 V -1V 1V 0 A 0A 0A)( e π e^{\pi} eπ e 3 π 2 e^{\frac{3\pi}{2}} e23π)
5( − 2 + 2 i 2 V -\frac{\sqrt{2} +\sqrt{2}i }{2}V 22 +2 iV 2 − 2 i 2 A \frac{\sqrt{2} -\sqrt{2}i }{2}A 22 2 iA)( − 2 2 V -\frac{\sqrt{2}}{2}V 22 V 2 2 A ) \frac{\sqrt{2}}{2}A) 22 A)( e 5 π 4 e^{\frac{5\pi}{4}} e45π e 7 π 4 e^{\frac{7\pi}{4}} e47π)
6( − i V -iV iV 1 A 1A 1A) 0 V 0V 0V 1 A 1A 1A)( e 3 π 2 e^{\frac{3\pi}{2}} e23π e 0 e^{0} e0)
7( 2 − 2 i 2 V \frac{\sqrt{2} -\sqrt{2}i }{2}V 22 2 iV 2 + 2 i 2 A \frac{\sqrt{2}+\sqrt{2}i }{2}A 22 +2 iA)( 2 2 V \frac{\sqrt{2}}{2}V 22 V 2 2 A \frac{\sqrt{2}}{2}A 22 A)( e 7 π 4 e^{\frac{7\pi}{4}} e47π e π 4 e^{\frac{\pi}{4}} e4π)
8( 1 V 1V 1V i A iA iA)( 1 V 1V 1V 0 A 0A 0A)( e 0 e^{0} e0 e π 2 e^{\frac{\pi}{2}} e2π)

无论在复频域中或者是Z域中,但凡特征值为复数,都意味着系统有一对共轭极点。共轭极点的位置表示系统的固有频率及其幅度变化情况。为方便理解,上面以Z平面中的特点举例(采样时间T不同,Z变换的结果也不同,那么特征值也不一样)。若特征值都在单位圆上,因此系统输出会等幅振荡,这是上述的情况。如果特征值在单位圆外,振荡幅值将不断增加(比如自激振荡之类),特征值在单位圆内,振荡幅值会不断衰减(把上述电路串一个电阻)。

上面讨论的是系统状态与特征向量方向相同的情况。但因为系统状态可以拆分成多个特征向量的线性组合,因而该论述对于任何的系统初始状态,都是适用的。

最后,给大家推荐一本《线性代数的几何意义》,是它带给了我灵感。

  • 24
    点赞
  • 53
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值