复数特征值求特征向量_深刻地认识特征值

本文探讨了复数特征值如何反映线性变换的本质,指出特征值与选择的基无关,通过变换实例说明这一特性,并强调特征值在矩阵多项式中的重要角色。
摘要由CSDN通过智能技术生成

本来的题目是“彻底认识特征值”,但是我认为不论什么时候也不能说是彻底。特征值是方阵特有的,那么方阵到底有什么特殊之处?它是表达线性变换的工具。

是一个
维线性空间,它的一个基是
为了认识
上的一个线性变换
只需确定它将这些基向量对应为哪些向量,而
上的每个向量都是基的线性组合。

则对于任意
下的坐标为
并且

于是记

下的坐标为
下的矩阵。

的特征值,是指存在非零向量
使得
此时称
的属于
的特征向量,也称
的特征值,且
的属于
的特征向量。

为什么要这样做呢?我们说明,特征值与所选的线性空间的基无关。另取

的一个基
则存在可逆矩阵
使得
称为基变换的过渡矩阵。因为

所以

下的坐标
接下来求
下的矩阵。计算

说明

下的矩阵为

我们知道矩阵

相似定义为存在可逆矩阵
使得
所以两个矩阵相似的充要条件是它们是同一个线性变换在不同基下的矩阵。

不难证明

的特征值的充要条件是
因此称
的特征多项式。当
是复矩阵时,它的特征多项式的根的代数重数之和为

进一步地,当两个矩阵相似时,它们有相同的特征多项式,所以有相同的特征值,且各特征值的代数重数相同,它们也正是

的特征值。

以上说明特征值跳出了基的束缚,体现线性映射本身的性质。这样的性质会在矩阵多项式,也就是线性映射的多项式中发挥作用。

是秩为
的的
阶复矩阵,满足
另设
的行列式。

首先我们证明

的特征值只可能有
的一个特征值,且
的属于
的特征向量,则

于是

只可能为
又因为
的秩为
所以
的特征值
的代数重数为
特征值
的代数重数为
特征多项式

于是

的行列式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值