trace of matrix

trace 的一个十分重要的性质在于线性性,

Tr(A+B)=Tr(A)+Tr(B)Tr(cA)=cTr(A)y=Hx+n
1. 基本性质

Tr(A)=Tr(A^T)
Tr(AB)=Tr(BA)
Tr(ABC)=Tr(BCA)=Tr(CAB)
因此如果 A 和 C 互逆的话,三者相乘的 Trace,等于中间方阵的 Trace;
2. 拓展
这里写图片描述

试证明,这里写图片描述

这里写图片描述

注意这里用到一个性质:这里写图片描述
反复利用求导的链式法则,以及 ∇ATr(AB)=BT,还有 Tr(A)=Tr(AT) 等基本等式,进行替换或简化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值