- 博客(46)
- 资源 (2)
- 收藏
- 关注
原创 马尔科夫链、隐马尔科夫模型、采样学习笔记
一、采样?给定区域的二维随机数最简单的采样问题:在原点会密集,三角形最长的边为一条边,以三角形的高维另一条边生成一个区域,在这个区域内生成随机数。去开根号生成圆内的方法。最大值最为一个点,用更大的区域来覆盖红色曲线的区域。落在红色点的要,落在灰色点的不要。推广,频率的极限为概率。LDA主题模型为多项分布。二、将采样...
2023-06-15 20:21:15 151
原创 Opencv开源学习:边缘检测篇
如何开源:先cmake一下:https://www.cnblogs.com/latup/p/9246841.html(一)先从感兴趣的边缘检测开始边缘检测中,其中一阶边缘检测的算法有:prewitt、canny、sobel,二阶边缘检测算法有:laplace1.Sobel边缘检测sobel算子根据像素点的上下、左右邻点加权差,在边缘达到极值来达到边缘检测的目的。对噪声有平滑作用,可...
2022-04-14 18:02:10 558
原创 CAD中的dxf文件解析(三):多段线篇
不想工作了,那就来写点文字吧!很久没更新,以至于自己都忘记了自己想要写的东西1.前言 在前面的CAD中的dxf文件解析(二)中讲到了一些CAD的dxf文件解析点、线、圆弧、圆、块等的思路。下面提供链接:(二):https://blog.csdn.net/weixin_40196271/article/details/106431821 (一):https://blog.csdn.net/weixin_40196271/article/details/106411...
2022-01-09 15:52:56 8277 3
原创 数据结构笔记(五)
1好久没更新数据结构,先来几个简单的热热身。一、热身1.栈从栈顶压入元素,从栈顶弹出元素,数据只有一个出入口。元素的进出顺序会是后进先出。压入举例:stack.push(10),此时栈为[10]; stack.push(3),此时栈为[10,3];stack.push(7),此时栈为[10,3,7]如果按刚刚的压入来弹出的话:stack.pop,结果会是7,栈会变成[10,3]如果栈空了,则会返回nil,...
2020-10-26 20:23:59 224
原创 CAD中的dxf文件解析(二):dxflib的使用
1.前言 上一篇中对dxf文件及文件中常见的需要解析的直线,圆,圆弧,椭圆,多段线的说明,对dxf文件有了初步的了解,并做好了下载dxflib,dxf帮助文档的准备(没有准备的可以回到上一篇)。https://blog.csdn.net/weixin_40196271/article/details/1064118362.dxflib中文件说明 下载好dxflib后,我们可以试运行它的demo,发现: dl_entities.h:这里面是定义...
2020-05-29 20:19:26 6109 9
原创 CAD中的dxf文件解析(一):准备工作
1.引言 CAD是工程中常见的画图软件,dxf是CAD中经常用到的文件,在工作中有用到对dxf文件进行解析的情况。这篇文章将说明如何用代码将dxf文件中的信息解析出来。2.dxf文件(可以了解一下) DXF是一种开放的矢量数据格式,可以分为两类:ASCII格式和二进制格式;ASCII具有可读性好的特点,但占用的空间较大;二进制格式则占用的空间小、读取速度快。 DXF文件是由很多的"代码"和"值"组成的"数据对"构造而成,这里的代码称为"组码"(g...
2020-05-29 19:44:42 13831 4
原创 CAD文件转到程序中研究
long time no see.项目中会有把CAD文件导入程序中进行处理的。要回到老本行了。一 CAD文件CAD文件通常见到的形式有dwg,dxf两种。先说明dwg,dwg可以分成两种,ASCII类型的和二进制的,其中二进制的比较精简,可以节省25%的空间。但是项目中会遇到的是ASCII的,所以说明ASCII文件的,包含的信息有以下这些:1.HEADER段,包含图形基本信息,包含数据...
2020-03-28 19:55:34 314
原创 C++基础知识补充
1.位知识<<:左移,将所有二进制状态的数左移,eg:5<<1 ,00000110往左移动了一位变成00001100,可以达到整个数放大两倍的作用,相当于乘2;>>:右移,将所有二进制状态的数右移,eg:>>1 ,往右移动了一位,可以达到整个数放大两倍的作用,相当于乘2;~:取反,将二进制状态中的0变成1,1变成0,eg:~5,000...
2019-12-03 16:02:43 162
原创 数据结构笔记(四)
一、插入结点s->next = p->next; p->next = s;具体代码实现:Status ListInsert(LinkList *L, int i,ElemType e){ int j; p= *L; j=1; if(!p||j>i) return ERROR; while(p&am...
2019-06-26 16:57:12 442
原创 数据结构笔记(三)
线性表:零个或多个数据元素的有限序列。其中n为线性表的长度,当n=0时,称为空表。一、顺序存储定义:线性表的顺序存储结构,指的是用一段地址连续的存储单元依次存储线性表的数据元素。数组长度是存放线性表的存储空间的长度,存储分配后这个量一般是不变的,而线性表长度是线性表中数据元素的个数,随着线性表插入和删除操作的进行,这个量是变化的。任意时刻,线性表的长度应该小于等于数...
2019-06-25 16:06:44 129
原创 数据结构学习笔记(二)
一、算法1.定义:为了解决某个或某类问题,把指令表示成一定的操作序列,操作序列包括一组操作,每个操作都完成特定的功能。2.基本性质(1)输入输出特性:可以有零个或多个输入,有一个或多个输出。(2)有穷性:算法在执行有限步骤后,自动结束不会出现无限循环,并且每个步骤在可接受的时间内完成。(3)确定性:算法的每个步骤都有确定的含义,不会出现二义性(4)可行性:算法的每一步都...
2019-06-18 15:11:54 122
原创 数据结构学习笔记(一)
一个有意思的学友推荐了一本有意思的书:《大话数据结构》来看看其中的截图:interesting?哈哈,我要开始了。一、几个概念:数据:计算机可操作的对象,能被计算机识别,输入计算机处理的符号集合,如网页、MP3、图片数据元素:组成数据的,有一定意义的基本单位,如人、牛、马、羊数据项:一个数据元素由若干个数据项组成,如眼、耳、鼻。是数据不可分割的最小单位。数据对象...
2019-06-15 10:12:13 161
原创 决策树和随机森林笔记
一、决策树给定一个数据表怎么画决策树。每个内部节点表示在一个属性上的测试,每一个分支代表一个测试输出,1. 以实例为基础的归纳信息。决策树的建立过程是一个递归的过程。以信息熵为度量构造一颗熵值下降信息的过程。信息越多,不确定性越小。决策树的建立过程是熵不断的下降过程。哪种下降更快,则以它作为优先节点。决策树的生成过程是贪心法,每一步都求当前最优。决策树可以自学习。不需要使用者了解背景,...
2019-06-12 09:17:30 296
原创 Adaboost学习笔记
一、Adaptive basis function models1.kernel methodskernel是度量x和u之间的距离的函数,也可以放在loss fuction中。kernel的形式有高斯kernel、球形kernel、cos距离(在nlp中用得很多,第j个word在第i个里面出现的次数)、RF kernel。怎么定义好kernel:如果想度量两幅图像的距离。kernel的...
2019-05-08 16:14:20 375
原创 C++基础笔记
1.函数和其他函数不属于同一类的问题考察的是不是同一个库里面的函数或者用法是不是类似补充知识:Iseek函数用于在指定的文件描述符将文件指针定位到相应的位置,并返回该位置,适用于操作系统级的POSIX文件描述符。fseek用于将文件读写指针移动到指定位置。pread是系统调用。snprintf属于stdion.hstrtok将字符串s按照delim制定的分隔符分解为一组...
2019-04-19 10:34:43 286
原创 QT调用balser相机SDK
1.连接相机 Generic Interface for Cameras。这是为了建立一个统一的API接口,这个接口可以用来操作GigE、USB、Camera link类型的工业相机。就是说先要看清楚所使用的工业相机是什么接口的。 如果相机连上了,那怎么知道这个相机的参数呢?这里是通过GenlCam中的GenApi模块来表示的,它用来表示相机的功能和控制方法。这个...
2019-04-08 17:48:41 1555
原创 数据结构学习笔记
1.使用容器vector:头文件:vector、iostream、algoritm(1)定义vector<int>v1(无初值);vector<int>v2(3,0)(三个元素初值为0)(2)实用迭代器的方式将容器中的值输出来for(vector<int>::iterator begin i = v2.begin();i!=v2.end();i++)...
2019-03-23 22:40:02 303
原创 熵学习笔记
,由推出1.定义熵是随机变量不确定性的度量,不确定性越大,熵值越大,若随机变量退化成定值,熵为0。均匀分布是“最不确定”的分布熵是定义了一个函数到一个值的映射。定义域是函数集,值域是值。有点泛函。,举个例子,如果是两点分布的时候,如果某个点概率为0或为1,则为确定分布,熵为0,均匀分布的时候熵为最大。2.联合熵联合分布的熵,3.条件熵Y发生的前提下,X发生的熵 ,...
2019-03-06 22:03:59 745
原创 python中各模块的学习
1.matplotlib能够使数据可视化,感觉很像MATLAB里面的显示功能。给出输入输出,再对坐标轴的参数进行设置,将图画出来。例子如下:(1)代码import matplotlib.pyplot as plt#输入输出input_value=[0,1,2,3,4,5]out_squares = [0,1,4,9,16,25]#坐标轴参数设置plt.plot(inpu...
2019-03-05 12:04:31 281
原创 线性回归
1.回归指的是连续性问题,线性只的是直线。目标函数:,要使这个值最小实际,其中根据中心极限定理,猜测符合高斯分布。则,再用极大似然法,,再取对数,再求导数为0,得到,如果不可逆,则加一个扰动,。2.梯度下降法前面建立的J是让J最小。由于x是个凸集,正的平方肯定是凸的,因此J是个凸函数,随机初始化,沿着梯度方向下降,不断迭代直到得到最优值(或者迭代相邻值在一定范围内)。...
2019-03-02 18:04:48 502
原创 凸优化学习笔记
1.凸集:一个集合区域内任意两点的直线连接都在这个区域内,则这个集合为凸集。比如:扇形、缺失了某个边的矩形就不属于凸集。2.超平面、半超平面超平面:,半超平面:或者。其中超平面在二维空间就是直线。超平面和半超平面可以组成一个多面体,构成凸集。3.保凸运算:交、仿射变换、透视变换交:比如超平面之间的交集是个凸集;仿射变换:,其中a是个矩阵,仿射变换可以经过平移、旋转、缩放。如果x...
2019-03-01 11:36:03 1155
原创 ubantu初探笔记
1. linux下文件的后缀名没有具体的意义,也可以不用加,但是为了便于区分,我们习惯在定位文件名的时候加一个后缀。这样用户看到这个文件名时就会知道它到底是个什么文件。例如.zip,.sh,.tar.gz,.cnf等等。2.linux与windows不同的是通过指令的形式来进行操作。如果有的时候提示没有权限的话,需要加入“sudo”。3.如果遇到错误的话,通常要通过错误码来进行问题的搜索。...
2019-02-26 13:51:42 297
原创 安装Ubantu
最近研究起Linux系统来,先来个安装Ubantu。1.先是在windows系统中,用虚拟机安装Ubantu。虚拟机:VMware具体安装方法:https://www.linuxidc.com/Linux/2016-11/137241p3.htm亲测有效。另外对于其中的VMwareTools的安装,见这篇:https://jingyan.baidu.com/album/93f9...
2019-02-19 18:19:54 1332
原创 相机调试参数笔记
主要是根据IPC人脸安装指导做些相机调试笔记:(如果有侵权,请联系我删掉,谢谢!)1.调试“曝光”参数(1)快门时间设置在一定时间范围内,确保相机曝光在这个范围内能够自动调节;设置一个上限是为了防止光线较暗的情况下出现人脸拖影(如果在这个临界值出现拖影在确保人脸亮度的情况下可以适当的降低这个值);快门时间越长,人脸亮度越亮,拖影越大。拖影是下面这种。(2)增益:越大亮度越大...
2019-02-15 17:28:46 3149
原创 对机器学习开源框架的一些认识
开源框架有:Theano、Tensorflow、Caffe、Torch、SciKit-learn等各自的应用:1.Theano开发于2007年,擅长处理多维数组的库,偏底层,需要从底层建立模型。与后来出现的Tensorflow非常相似。它的优点有:使用计算图,RNN 与计算图兼容良好,有 Keras 和 Lasagne 这样高层的库,门槛比Tensorflow 低,缺点有:底层,较Torc...
2019-02-14 10:26:38 166
原创 视觉发展历程笔记:From cs231n
以下内容主要学习李飞飞视觉第一课笔记。如果有不对的地方,请指出,谢谢! 视觉可以和很多学科相关,比如用到镜头,成像知识的物理,生物,用到建模的数学,与机器人相关的工程学,用来感知的心理学,计算机科学等。 从16世纪的达芬奇的相机针孔原理图,到1959年Hubel和Wiesel对感知中光感、电感、声感刺激的研究,再到1963年Larry Robe...
2018-12-25 10:58:55 220
原创 监督学习应用:梯度下降
监督学习装甲车:训练它,训练过程由真人实施,但是装甲车在学习,记录训练员的动作,图像。人类司机交给它用什么方向来行驶。是监督学习的过程。2分钟训练后,装甲车学习了人类司机的动作。12次后,可以自己进行驾驶。这是一个回归问题,连续值。房屋例子:面积和价格。可以将训练数据画出来,表示它们的关系。m表示数目,有47个训练样本。之后,用x表示输入变量,通常也可以成为特征,y表示输出变量,有时也成为...
2018-12-07 10:32:59 152
原创 深度学习小结
1.深度学习 为何有效:模型复杂度、大量数据、硬件崛起。有效的算法。2.线性模型:比如是3分类问题。如果图像是2*2的,线性模型能做的是把变成四维矩阵的向量。如果输入的图像跟所对应的类的点成的对象越大,说明越接近。Linear Weights相当于Template.每一类的w就是每一类模板的图像。点乘之后要做一个非线性变换。ReLU是比较简单的非线性,对模型是有帮助的。再加入激活函数中后...
2018-11-28 09:31:04 392
原创 机器学习笔记1:机器学习的动机与应用
目标:机器学习有意义;机器学习的应用;所有人有能力进行机器学习的研究。预备知识:队、列、二叉树、线性代数预备软件:Octave、Matlab机器学习:1959年由Arthur提出:在不直接对对问题赋予计算机学习能力的一个领域。写一个下棋,和自己下棋,程序自己和自己下棋,学习怎样胜,怎样输。程序比人更会下棋。让机器自己学习。TOM1998,对于一个计算机,程序自己从中学习,经验E,任务T...
2018-11-23 09:36:50 272 1
原创 BRISK算法学习笔记
一、部分原文解读1.尺度空间关键点检测 兴趣点用一个显著性标准在图像和尺度空间进行识别。为了加快计算的效率,关键点可以在金字塔图像的层或者层之间进行检测。每个关键点的位置和尺度通过二次函数拟合的方式在持续的区域获得。2.关键点描述 一个由依靠合适的尺度中心圆的点组成的采样方式是应用在每个关键点的邻域上来恢复灰度值:计算局部梯度强度的过程中,特征的方向可...
2018-11-21 14:44:10 5218 2
原创 三维视觉学习笔记
0.引言:怎么获得3D信息?>>用2D相机、距离传感器在3D世界获得3D信息?>>从相机中进行2D、3D重建;用Kinect传感器,激光距离传感器直接3D获取传感器思维?>>用阵列相机 1.2D到3D的重构可以利用小孔成像或双目摄像原理实现2D到3D的重构。通过特征来对应关系,如果相机移动了,就要找到对应关系,用Hough或者...
2018-11-20 10:49:03 1850
原创 图像处理基础知识笔记
一、噪声1.噪声产生的原因:传感器源的质量、光照的影响、质量的影响2.加性噪声:与信号关系相加3.乘性噪声:与信号关系相乘,与信噪比有关,随机性是变性白噪声:功率谱在整个频域内分布的噪声高斯噪声:呈高斯型 二、滤波eg:利用矩形框低通滤波器来滤波在频域里面是个有波峰波谷的曲线,有些高通的是可以通过的,滤波后会出现锯齿状不平滑的效果,振铃现象。 二维的...
2018-11-14 09:48:29 469
原创 小波变换学习笔记
一、小波介绍概括(来源于百度) 传统的信号理论,是建立在Fourier分析基础上的,而Fourier变换作为一种全局性的变化,其有一定的局限性,如不具备局部化分析能力、不能分析非平稳信号等。在实际应用中人们开始对Fourier变换进行各种改进,以改善这种局限性,如STFT(短时傅立叶变换)。由于STFT采用的的滑动窗函数一经选定就固定不变,故决定了其时频分辨率固定不变,不...
2018-11-13 16:52:51 2827
原创 SIFT算法原文解析
一、整体概括 在David G.Lowe的《Distinctive Image Features from Scale-Invariant Keypoints》中讲解了有很多特性的图像特征,这些特征在不同图像的物体中或者场景中都是很适用的。这些特征具有尺度不变性和旋转不变性,尤其在光照和3D相机视角改变时具有不变性。它们在空间和频域下都能进行良好地定位,降低了由于闭塞、杂乱和噪声代...
2018-11-12 09:17:46 3083
原创 Harris角点
大部分搬运:http://www.cnblogs.com/ronny/p/4009425.html一、理论知识Harris角点是在1981的Moravec的角点理论的基础上再1988由Harris提出的。因此,先说明Moravec的角点理论。Moravec角点说明的从方向(1,0),(0,1),(1,1),(-1,1)四个方向出发的像素的变化值,它有三种情况: (1)如...
2018-11-06 17:23:43 916
原创 AlexNet原文说明
AlexNet相对于之前的卷积神经网络,它使用了最大池化层,ReLU, softmax, GPU1.先说明下ReLU:标准的方法来模拟神经元的输出f的函数是用f(x) = tanh(x)或者另外一个指数函数,但是对于梯度下降的训练时间来说,这些饱和的非线性要比不饱和非线性f(x) = max(0,x)慢得多。在相同条件下使用ReLU训练的深度神经网络要比tanh快得多。在多样GPUs的训练...
2018-11-06 16:30:20 1977
原创 线性代数知识补充
1.矩阵乘法:A B相乘要满足 A的列= B的行eg:乘法的性质:结合律:(AB)C=A(BC);分配律:(A+B)C = AC + BC, C(A + B)= CA + CB,k(AB)= (kA)B = A(kB); 转置:。 没有交换律。2.矩阵转置:矩阵的行和列的翻转 ; ; 3.对称矩阵:方阵A满足,如果满足 为...
2018-11-02 14:59:49 1735
原创 霍夫变换(主要说明检测直线及圆的原理)
霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法。主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等)。最基本的霍夫变换是从黑白图像中检测直线(线段)。一、直线检测1.直线的表示方式对于平面中的一条直线,在笛卡尔坐标系中,常见的有点斜式,两点式两种表示方法。然而在hough变换中,考虑的是另外一种表示方式:使用(r,theta)来表...
2018-10-24 17:10:02 38519 3
原创 python入门笔记(4)
字典1.定义eg:alien_0 = { ‘color’: ‘green’, ‘points’: 5**}**在字典alien_0中存储了外星人的颜色和点数。跟列表不同的是用了“{}”;‘color’:'green’和‘points’:5称为键一值对。2.访问字典:在上述例子中打印print(alien_0[‘color’])输出:green3.添加键一值对在例子1中添加:a...
2018-10-19 14:32:41 179
原创 python入门笔记(3)
输出:title,upper,lower,列表eg:motorcycles = [‘honda’, ‘yamaha’, ‘suzuki’]索引:从0开始,-1表示最后一个改变:motorcycles[0] = ‘ducati’,将第一个元素‘honda’替换为‘ducati’;添加 append:motorcycles.append(‘ducati’)在末尾添加上元素‘ducati’;...
2018-10-16 11:32:14 198
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人