# Poj 1258 Agri-Net【最小生成树】

Agri-Net
 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 45255 Accepted: 18591

Description

Farmer John has been elected mayor of his town! One of his campaign promises was to bring internet connectivity to all farms in the area. He needs your help, of course.
Farmer John ordered a high speed connection for his farm and is going to share his connectivity with the other farmers. To minimize cost, he wants to lay the minimum amount of optical fiber to connect his farm to all the other farms.
Given a list of how much fiber it takes to connect each pair of farms, you must find the minimum amount of fiber needed to connect them all together. Each farm must connect to some other farm such that a packet can flow from any one farm to any other farm.
The distance between any two farms will not exceed 100,000.

Input

The input includes several cases. For each case, the first line contains the number of farms, N (3 <= N <= 100). The following lines contain the N x N conectivity matrix, where each element shows the distance from on farm to another. Logically, they are N lines of N space-separated integers. Physically, they are limited in length to 80 characters, so some lines continue onto others. Of course, the diagonal will be 0, since the distance from farm i to itself is not interesting for this problem.

Output

For each case, output a single integer length that is the sum of the minimum length of fiber required to connect the entire set of farms.

Sample Input

4
0 4 9 21
4 0 8 17
9 8 0 16
21 17 16 0


Sample Output

28

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int n,cnt,kase,per[105];
struct lu
{
int a,b;
int len;
}x[10005];
void init()
{
for(int i=1;i<=n;++i)
{
per[i]=i;
}
}
int find(int x)
{
int r=x;
while(r!=per[r])
{
r=per[r];
}
int i=x,j;
while(i!=r)
{
j=per[i];per[i]=r;i=j;
}
return r;
}
void join(int x,int y)
{
int fx=find(x),fy=find(y);
if(fx!=fy)
{
per[fx]=fy;
++cnt;kase=1;
}
}
int cmp(lu a,lu b)
{
return a.len<b.len;
}
int main()
{
int t,i,j,a,c,m;
while(~scanf("%d",&n))
{
init();c=m=cnt=0;//注意初始化
for(i=0;i<n;++i)
{
for(j=0;j<n;++j)
{
scanf("%d",&a);
if(i!=j)//统计顶点和边
{
x[c].a=i+1;x[c].b=j+1;
x[c++].len=a;
}
}
}
sort(x,x+c,cmp);
for(i=0;cnt<n-1;++i)//遍历查找，加入集合
{
kase=0;
join(x[i].a,x[i].b);
if(kase)
{
m+=x[i].len;//累加总权值
}
}
printf("%d\n",m);
}
return 0;
}

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int n,per[105];
struct lu
{
int a,b,len;
}x[5005];
void init()
{
for(int i=1;i<=n;++i)
{
per[i]=i;
}
}
int find(int x)
{
return x==per[x]?x:per[x]=find(per[x]);//递归压缩，更简短
/*int r=x;
while(r!=per[r])
{
r=per[r];
}
int i=x,j;
while(i!=r)//循环用的多了，偶尔试试递归
{
j=per[i];per[i]=r;i=j;
}
return r;*/
}
int join(int x,int y)
{
int fx=find(x),fy=find(y);
if(fx!=fy)
{
per[fx]=fy;
return 1;
}
return 0;
}
bool cmp(lu a,lu b)
{
return a.len<b.len;
}
int main()
{
int i,j,a,k;
while(~scanf("%d",&n))
{
init();k=0;
for(i=0;i<n;++i)
{
for(j=0;j<n;++j)
{
scanf("%d",&a);
if(i<j)//这个限定条件，使得保存的边没有重复的
{
x[k].a=i+1;x[k].b=j+1;
x[k++].len=a;
}
}
}
sort(x,x+k,cmp);
int sum=0,cnt=0;
for(i=0;cnt<n-1;++i)//这样限定，提前跳出循环
{
if(join(x[i].a,x[i].b))
{
sum+=x[i].len;
++cnt;//边数
}
}
printf("%d\n",sum);
}
return 0;
}

// 2016年4月13日

/*
http://blog.csdn.net/liuke19950717
*/
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int inf=0x3f3f3f3f;
const int maxn=105;
int graph[maxn][maxn],mincost[maxn];
void init(int n)
{
memset(graph,inf,sizeof(graph));
memset(mincost,inf,sizeof(mincost));
}
int prim(int n)
{
int vis[maxn]={0},ans=0;
mincost[0]=0;
while(1)
{
int v=-1;
for(int u=0;u<n;++u)
{
if(!vis[u]&&(v==-1||mincost[u]<mincost[v]))
{
v=u;
}
}
if(v==-1)
{
break;
}
vis[v]=1;
ans+=mincost[v];
for(int u=0;u<n;++u)
{
if(!vis[u])
{
mincost[u]=min(mincost[u],graph[v][u]);
}
}
}
return ans;
}
int main()
{
int n;
while(~scanf("%d",&n))
{
init(n);
for(int i=0;i<n;++i)
{
for(int j=0;j<n;++j)
{
scanf("%d",&graph[i][j]);
}
}
printf("%d\n",prim(n));
}
return 0;
}