一、 题目
1. 题目描述
用一个大小为 m x n
的二维网格 grid
表示一个箱子。你有 n
颗球。箱子的顶部和底部都是开着的。
箱子中的每个单元格都有一个对角线挡板,跨过单元格的两个角,可以将球导向左侧或者右侧。
- 将球导向右侧的挡板跨过左上角和右下角,在网格中用
1
表示。 - 将球导向左侧的挡板跨过右上角和左下角,在网格中用
-1
表示。
在箱子每一列的顶端各放一颗球。每颗球都可能卡在箱子里或从底部掉出来。如果球恰好卡在两块挡板之间的 "V" 形图案,或者被一块挡导向到箱子的任意一侧边上,就会卡住。
返回一个大小为 n
的数组 answer
,其中 answer[i]
是球放在顶部的第 i
列后从底部掉出来的那一列对应的下标,如果球卡在盒子里,则返回 -1
。
示例 1:
输入:grid = [[1,1,1,-1,-1],[1,1,1,-1,-1],[-1,-1,-1,1,1],[1,1,1,1,-1],[-1,-1,-1,-1,-1]]
输出:[1,-1,-1,-1,-1]
解释:示例如图:
b0 球开始放在第 0 列上,最终从箱子底部第 1 列掉出。
b1 球开始放在第 1 列上,会卡在第 2、3 列和第 1 行之间的 “V” 形里。
b2 球开始放在第 2 列上,会卡在第 2、3 列和第 0 行之间的 “V” 形里。
b3 球开始放在第 3 列上,会卡在第 2、3 列和第 0 行之间的 “V” 形里。
b4 球开始放在第 4 列上,会卡在第 2、3 列和第 1 行之间的 “V” 形里。
示例 2:
输入:grid = [[-1]]
输出:[-1]
解释:球被卡在箱子左侧边上。
示例 3:
输入:grid = [[1,1,1,1,1,1],[-1,-1,-1,-1,-1,-1],[1,1,1,1,1,1],[-1,-1,-1,-1,-1,-1]]
输出:[0,1,2,3,4,-1]
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 100
grid[i][j]
为1
或-1
- 深度优先搜索
- 数组
- 动态规划
- 矩阵
- 模拟
- 👍 133
- 👎 0
2. 原题链接
链接: 1706. 球会落何处
二、 解题报告
1. 思路分析
直接DP模拟或者DFS都可以,判断条件写的细一点就行。
DFS的话试了下记忆化还不如朴素,应该是数据弱
DP的话可以多开一行,直接作为结果。
2. 复杂度分析
最坏时间复杂度O(nlog2n)
3. 代码实现
dp
。
class Solution:
def findBall(self, grid: List[List[int]]) -> List[int]:
m,n = len(grid),len(grid[0])
# @cache
# def dfs(x,y):
# # 第x排,第y列的小球从底部哪里掉出来
# # 记忆化比不记忆还慢
# if x == m-1:
# if grid[x][y] == 1:
# if y == n - 1 or grid[x][y+1] == -1:
# return -1
# return y+1
# elif grid[x][y] == -1:
# if y == 0 or grid[x][y-1] == 1:
# return -1
# return y - 1
# if grid[x][y] == 1:
# if y == n - 1 or grid[x][y+1] == -1:
# return -1
# return dfs(x+1,y+1)
# elif grid[x][y] == -1:
# if y == 0 or grid[x][y-1] == 1:
# return -1
# return dfs(x+1,y-1)
# ans = [dfs(0,i) for i in range(n)]
dp = [[-1]*n for _ in range(m+1)] # 记录小球j在落到第i层的位置
dp[0] = list(range(n))
for i in range(1,m+1):
for j in range(0,n):
pos = dp[i-1][j]
if pos == -1:
continue
g = grid[i-1][pos]
if g == 1:
if pos == n-1 or grid[i-1][pos+1] == -1:
continue
dp[i][j] = pos + 1
elif g == -1:
if pos == 0 or grid[i-1][pos-1] == 1:
continue
dp[i][j] = pos -1
# print(dp)
ans = dp[m]
return ans
"""
\ \ \ \ \ \
/ / / / / /
\ \ \ \ \ \
/ / / / / /
"""
三、 本题小结
- DFS简单点