EM算法3-高斯混合模型的EM算法

在实现了EM算法的感性理解和理论推导之后,可以对经典算法混合高斯模型进行EM算法的求解。

高斯混合模型具有如下的概率分布: 在这里插入图片描述
其中 α k \alpha_k αk>0 并且 ∑ k = 1 K \sum_{k=1}^K k=1K α k \alpha_k αk=1, 同时有:
在这里插入图片描述
高斯混合模型可以理解为:
一共有K个高斯模型,第k个高斯模型被选中的概率为 α k \alpha_k αk。每一次获得观测数据时,首先根据 α k \alpha_k αk选择第出一个模型,然后根据第k个模型的高斯分布 Φ \Phi Φ(Y| θ k \theta_k θk)获得最终的观测结果,其中 θ k \theta_k θk={ μ k \mu_k μk, σ k \sigma_k σk}。

根据高斯混合模型,我们想要求的最大似然函数为:
在这里插入图片描述
OK,看上面这个式子,log里面累加,求导求极值点什么的求不了,所以直接上EM算法:

根据高斯混合模型的理解,可以定义隐变量为:z= γ i k \gamma_{ik} γik,当K=5,选择了第2个模型时, γ i k \gamma_{ik} γik=[0,1,0,0,0]

则根据EM算法:
E步:
初始化参数一个求解P(z| y i y_i yi, θ k \theta_k θk):
在这里插入图片描述
定义:
在这里插入图片描述
所以L( θ \theta θ)在 θ 0 \theta_0 θ0的下界为:
在这里插入图片描述
然后M步:
我们需要求下界函数的最大值,即:
在这里插入图片描述
然后其实就是更新参数 α k \alpha_k αk μ k \mu_k μk, σ k \sigma_k σk, 在求 μ k \mu_k μk, σ k \sigma_k σk时,可以直接求导即可:
在这里插入图片描述
在求 α k \alpha_k αk时,由于 α k \alpha_k αk有参数约束: ∑ k = 1 K \sum_{k=1}^K k=1K α k \alpha_k αk=1,可以构造拉格朗日函数然后求解:
在这里插入图片描述
分别对 α k \alpha_k αk λ \lambda λ求导:
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值