EM算法求解高斯混合模型

1. 高斯混合模型

p ( x ) = ∑ k = 1 K π k N ( x ∣ μ k , Σ k ) p(x)=\sum_{k=1}^K\pi_kN(x|\mu_k,\Sigma_k) p(x)=k=1KπkN(xμk,Σk)其中 N ( x ∣ μ k , Σ k ) = 1 ( 2 π ) d / 2 ∣ Σ k ∣ e − 1 2 ( x − μ k ) T Σ k − 1 ( x − μ ) , ∑ k = 1 K π k = 1 N(x|\mu_k,\Sigma_k)=\large\displaystyle\frac{1}{(2\pi)^{d/2}|\Sigma_k|}\Large e^{\large-\frac{1}{2}(x-\mu_k)^T\Sigma_k^{-1}(x-\mu)} \normalsize, \sum_{k=1}^K\pi_k=1 N(xμk,Σk)=(2π)d/2Σk1e21(xμk)TΣk1(xμ)k=1Kπk=1

2. EM(Expectation Maximization)算法求解

  • ① 随机化
    随机化参数 { π k , μ k , Σ k } , k = 1 ∼ K \{\pi_k,\mu_k,\Sigma_k\},k=1\sim K {πk,μk,Σk},k=1K
  • ② E-step
    γ n k = π k N ( x n ∣ μ k , Σ k ) ∑ k = 1 K π k N ( x n ∣ μ k , Σ k ) , 样 本 数 n = 1 ∼ N \large\gamma_{nk}=\displaystyle\frac{\pi_kN(x_n|\mu_k,\Sigma_k)}{\displaystyle\sum_{k=1}^K\pi_kN(x_n|\mu_k,\Sigma_k)},\quad样本数n=1\sim N γnk=k=1KπkN(xnμk,Σk)πkN(xnμk,Σk),n=1N γ n k \large\gamma_{nk} γnk表示第 n n n 个样本落在第 k k k 个高斯分布的概率
  • ③ M-step
    首先计算出所有 N N N 个样本中有多少属于第 k k k 个高斯分布:
    N k = ∑ n = 1 N γ n k N_k=\sum_{n=1}^N\gamma_{nk} Nk=n=1Nγnk显然 ∑ k = 1 K = N \displaystyle\sum_{k=1}^K=N k=1K=N,下面可以计算更新的参数
    { π k = N k N 第 k 个 高 斯 分 布 的 概 率 μ k = 1 N k ∑ n = 1 N γ n k x n 第 k 个 高 斯 分 布 的 均 值 Σ k = 1 N k ∑ n = 1 N γ n k ( x n − μ k ) ( x n − μ k ) T 第 k 个 高 斯 分 布 的 协 方 差 矩 阵 \begin{cases} \pi_k=\displaystyle\frac{N_k}{N} & 第k个高斯分布的概率\\\\ \mu_k=\displaystyle\frac{1}{N_k}\sum_{n=1}^N\gamma_{nk}x_n&第k个高斯分布的均值\\\\ \Sigma_k=\displaystyle\frac{1}{N_k}\sum_{n=1}^N\gamma_{nk}(x_n-\mu_k)(x_n-\mu_k)^T&第k个高斯分布的协方差矩阵 \end{cases} πk=NNkμk=Nk1n=1NγnkxnΣk=Nk1n=1Nγnk(xnμk)(xnμk)Tkkk
  • ④ 再次执行②,循环直至收敛
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值