给numpy矩阵添加一列

介绍了一种在numpy矩阵中通过直接赋值的方式添加新列的方法。
摘要由CSDN通过智能技术生成

# coding=utf-8
from pandas import DataFrame
import datetime
import numpy as np
import pandas as pd

# The error metric: RMSE on the log of the sale prices.
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import KFold
import xgboost as xgb
from sklearn.linear_model import Lasso, Ridge, ElasticNet
from sklearn.kernel_ridge import KernelRidge
from sklearn.base import BaseEstimator, RegressorMixin

from sklearn.preprocessing import LabelEncoder
from scipy.stats import skew
import csv

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import RandomForestClassifier
from pandas import DataFrame

data = pd.read_csv('hoursetrain1.csv')  # 数据文件路径,data 是list
# print data.columns.size  #'finalData.csv' 文件的列数
# print len(data)          #'finalData.csv' 文件的行数

x1 = data.drop(['Survived'], axis=1)  #除了label 外的全部数据
y1 = data['Survived']
x = np.array(x1)
y = np.array(y1)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.5, random_state=1)
# logistic回归
lr = LogisticRegression(penalty='l2')
#print lr
lr.fit(x_train, y_train)
y_hat = lr.predict(x_test)  # y_hat 是预测出来的类别

b =np.ones(50)
print len(x)
print len(y_hat)
print np.c_[x_train,y_hat]  # x_train 增加一列内容为y_hat的值
print np.column_stack((x_train,y_hat))   # x_train 增加一列内容为y_hat的值
 
网上的例子:
首先我们有一个数据是一个mn的numpy矩阵现在我们希望能够进行给他加上一列变成一个m(n+1)的矩阵

import numpy as np
a = np.array([[1,2,3],[4,5,6],[7,8,9]])
b = np.ones(3)
c = np.array([[1,2,3,1],[4,5,6,1],[7,8,9,1]])
PRint(a)
print(b)
print(c)

[[1 2 3]
 [4 5 6]
 [7 8 9]]
[ 1.  1.  1.]
[[1 2 3 1]
 [4 5 6 1]
 [7 8 9 1]]
我们要做的就是把a,b合起来变成c

方法一

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值