1、图像的各种变换(cvtColor*+)imgproc
imgproc是OpenCV一个比较复杂的lib,我是分开介绍的,之前介绍过了滤波器、直方图、结构分析和形状描述三节,这次介绍一下图像的变换,OpenCV对于图像的变换又可分为几何变换和其他的变换,我这节先介绍一下其他的变换。
这部分的函数包括adaptiveThreshold,对图像进行自适应的阈值操作。
相应的也有更一般常用的阈值操作函数threshold。
这里还是详细介绍一下cvtColor,这个函数是用来进行颜色空间的转换,随着OpenCV版本的升级,对于颜色空间种类的支持也是越来越多。这里汇总一下,把我知道的全部空间列举出来,也许还不完整,希望大家补充。需要先告诉大家的是OpenCV默认的图片通道是BGR。
RGB <--> BGR:CV_BGR2BGRA、CV_RGB2BGRA、CV_BGRA2RGBA、CV_BGR2BGRA、CV_BGRA2BGR
RGB <--> 5X5:CV_BGR5652RGBA、CV_BGR2RGB555、(以此类推,不一一列举)
RGB <---> Gray:CV_RGB2GRAY、CV_GRAY2RGB、CV_RGBA2GRAY、CV_GRAY2RGBA
RGB <--> CIE XYZ:CV_BGR2XYZ、CV_RGB2XYZ、CV_XYZ2BGR、CV_XYZ2RGB
RGB <--> YCrCb(YUV) JPEG:CV_RGB2YCrCb、CV_RGB2YCrCb、CV_YCrCb2BGR、CV_YCrCb2RGB、CV_RGB2YUV(将YCrCb用YUV替代都可以)
RGB <--> HSV:CV_BGR2HSV、CV_RGB2HSV、CV_HSV2BGR、CV_HSV2RGB
RGB <--> HLS:CV_BGR2HLS、CV_RGB2HLS、CV_HLS2BGR、CV_HLS2RGB
RGB <--> CIE L*a*b*:CV_BGR2Lab、CV_RGB2Lab、CV_Lab2BGR、CV_Lab2RGB
RGB <--> CIE L*u*v:CV_BGR2Luv、CV_RGB2Luv、CV_Luv2BGR、CV_Luv2RGB
RGB <--> Bayer:CV_BayerBG2BGR、CV_BayerGB2BGR、CV_BayerRG2BGR、CV_BayerGR2BGR、CV_BayerBG2RGB、CV_BayerGB2RGB、 CV_BayerRG2RGB、CV_BayerGR2RGB(在CCD和CMOS上常用的Bayer模式)
YUV420 <--> RGB:CV_YUV420sp2BGR、CV_YUV420sp2RGB、CV_YUV420i2BGR、CV_YUV420i2RGB
还有函数distanceTransform,是用来计算各像素距离最近的零像素距离的。
floodFill函数用来用指定颜色填充一个连通部件。
inpaint函数用来用附近区域信息重建选中区域,可以对图像里由于传输噪声丢失的块进行重建。
integral函数用来获得图像的积分值。
给图像添加水印的函数watershed。
对图像进行GrabCut算法的grabCut函数(有待研究,不熟悉)。
总之,这些变换千奇百怪,不是很系统,常用的还是我先介绍的几个,比如threshold、cvtColor。就这样吧,以后有收获再陆续补充。
2、contrib为最新贡献但不是很成熟的函数库。作为最新的东西,就更有价值进行庖丁解牛了,我来也。
首先介绍一个CvAdaptiveSkinDetector类。该类的功能是自适应的皮肤检测。分析了一下代码,其构造函数的输入参数有两个,samplingDivider样本分类,morphingMethod为变形方法。该类的关键函数为process函数,该函数先将输入图像由RGB转换为HSV空间,Hue的范围是3~33,Intensity(V)的范围为15~250。然后进行必要的腐蚀膨胀,去除噪声,使轮廓更加清晰平滑。具体的使用代码参考sample文件夹中的adaptiveskindetector.cpp
最近也在玩手势识别,资料找了很多,基本可以分为静态手势识别和动态手势识别,先弄个简单的静态手势识别给大家看看。
基本流程如下:
先滤波去噪-->转换到HSV空间-->根据皮肤在HSV空间的分布做出阈值判断,这里用到了inRange函数,然后进行一下形态学的操作,去除噪声干扰,是手的边界更加清晰平滑-->得到的2值图像后用findContours找出手的轮廓,去除伪轮廓后,再用convexHull函数得到凸包络。
结果如下:
源代码下载位置:http://download.csdn.net/detail/yang_xian521/3746669,有点贵哦,当时随便设了个值,呵呵