【三体】人物论——托马斯 · 维德

前进!前进!不择手段的前进!

只送大脑。

你会把你妈卖给妓院吗?

托马斯·维德,前联合国官员,马基雅维利主义者。前期在PIA执行阶梯计划,将云天明的大脑送往三体文明,后来云天明的童话为人类送来希望。在程心冬眠期间研制曲率光速飞船,为便于研制与试验,尝试与政府对立,被程心阻止,后被人类判死刑。研制曲率光速飞船的工作后来由罗辑领导并成功研制。

行星防御理事会战略情报局(PIA)成立,托马斯·维德为首任局长,程心自航天技术研究所调入。第一次会议上,维德提出阶梯计划,并不顾行星防御理事会的反对,要求部下不择手段地前进。因为送入太空的物质除去飞船外质量只能限制于半公斤之内,在会场外,托马斯·维德提出所谓”只送大脑”的阶梯计划,并在随后召开的特别联大会议上通过。

托马斯·维德为成为执剑人向程心开枪。程心身中两弹幸存。维德失去一只手臂后被逮捕,以谋杀未遂判刑三十年。后来程心成为执剑人,在三体人入侵时没有按下开关导致人类陷入危机,“蓝色空间”舰长褚岩挟持“万有引力”号为人类暂时解除了危机。

维德减刑后刑满(共服刑11年)出狱。一个月后维德找到程心要求接管星环公司来制造光速飞船,程心要求当这事业有可能危机人类生命时必须唤醒冬眠的她,并且她拥有最终决定权。维德同意了。

程心参观星环城。维德向程心展示了他与毕云峰空间曲率驱动上取得的成果——让一个头发丝用曲率驱动推进了几厘米,以及配备了反物质武器的军队,程心认为这有违人性,所以就命令维德立即停止抵抗并交出星环城。维德遵守了约定(“你看,小女孩,我遵守了诺言。”这是维德同意程心时说的话)。在随后进行的太阳系联邦法庭审判中,维德被以反人类罪、战争罪和违反曲率驱动技术禁止法罪被判处死刑,在一道强激光中被瞬间气化。其后罗辑接手了维德的工作。后来,由于程心交出了星环城的控制权,人类没有造出足够多的曲率驱动飞船,致使太阳系人类除程心和艾AA外全部被二向箔压缩成二维

智子:“知道吗?在我们的人格分析系统中,你的威慑度在百分之十上下波动,像一条爬行的小蚯蚓;罗辑的威慑度曲线像一条凶猛的眼镜蛇,在百分之九十高度波动;而维德......他根本没有曲线,在所有外部环境参数下,他的威慑度全顶在百分之一百,那个魔鬼!如果他成为执剑者,这一切都不会发生,和平将继续,我们已经等了六十二年,都不得不继续等下去,也许再等半个世纪或更长。那时,三体世界只能同在实力上已经势均力敌的地球文明战斗,或妥协......但我们知道,人们肯定会选择你的。”

艾AA:“那个男人,真难想象有那么阴暗那么疯狂那么变态!”

艾AA:“他说得对,你没有能力做这件事,这会彻底毁了你的!但他行,这个混蛋、恶魔、杀人犯、野心家、政治流氓、技术狂人......他行,他有干这事的精神力量和本事,让他去干好了,这是地狱,让他跳进去吧。”

程心:这个人精神的核心,就是极端理智带来的极端冷酷和疯狂。 

程心:想到了一个合格的男人,他的声音犹在耳边:前进,前进!不择手段地前进!

在Python编程中,"运动"通常是指模拟经典的牛顿问题,这是一个物理学上的经典问题,涉及到个质点之间的引力相互作用。这种运动通常用于展示多动力学、天力学以及数值计算方法,如欧拉法或四阶Runge-Kutta方法。 要编写这样的程序,你需要了解基本的物理定律,比如牛顿第二定律F=ma,以及如何通过向量运算表达引力作用。Python提供了诸如NumPy库来处理向量和矩阵运算,Matplotlib库则可以用来可视化运动轨迹。 下面是一个简化的示例,展示了如何使用Python的基本数学模块和循环来模拟运动: ```python import numpy as np from matplotlib import pyplot as plt # 定义常数 G = 6.674e-11 # 引力常数 m1 = m2 = m3 = 1 # 质量相同的物 r0 = [1, 0, 0] # 初始位置 v0 = [0, 0, 0] # 初始速度 # 设置时间步长和总时间 dt = 0.01 total_time = 10 # 计算并更新位置和速度 def update(state, masses, G): r = state[:3] v = state[3:] forces = np.array([[-G * masses[i] / np.linalg.norm(r - rj)**3 * (r - rj) for j in range(3)] for i in range(3)]) a = forces.sum(axis=0) / masses return np.concatenate((v + dt * a, r + dt * v)) state = np.zeros(6) # 初始化状态(位置+速度) positions = [r0] # 存储所有时间点的位置 for _ in range(int(total_time / dt)): state = update(state, [m1, m2, m3], G) positions.append(state[:3]) plt.plot(*zip(*positions), 'o-') plt.xlabel('x') plt.ylabel('y') plt.title('运动模拟') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值