(一)矩阵的基本操作
1、 生成一个3×3的矩阵A,它的元素为你任意指定的9个不同的正整数,计算A的行列式并将其赋值给变量b,若b0,求出矩阵B=。若b=0,重新选择A。
将所生成的矩阵A及B连在一起,构成一个3×6的矩阵,并付给变量C,在workspace中观察C的类型、大小以及当前值。并用save 命令将C存储为一个数据文件以备下列题目利用Load命令调用;
解: A=[87,98,21;547,985,624;555,547,698]
A =
87 98 21
547 985 624
555 547 698
>> b=det(A)
b =
21445160
>> B=inv(A)
B =
0.0161 -0.0027 0.0019
-0.0017 0.0023 -0.0020
-0.0115 0.0003 0.0015
>> C=[A B]
C =
87.0000 98.0000 21.0000 0.0161 -0.0027 0.0019
547.0000 985.0000 624.0000 -0.0017 0.0023 -0.0020
555.0000 547.0000 698.0000 -0.0115 0.0003 0.0015
2、 利用load命令调出C并取出它的1-2行,2-4列的子块,另存为一个2×3的矩阵d,生成一个与d相同大小的随机矩阵矩阵e,计算d+e,
d-e,,.*e , ,将结果中所有的对角线元素全部换为0.5。
解:>> save C
>> load C
>> d=C(1:2;2:4)
>> d=C(1:2,2:4)
d =
98.0000 21.0000 0.0161
985.0000 624.0000 -0.0017
>> e=[21,45,87;74,87,32]
e =
21 45 87
74 87 32
>> d+e
ans =
1.0e+003 *
0.1190 0.0660 0.0870
1.0590 0.7110 0.0320
>> d-e
ans =</