Matlab中矩阵的基本操作

本文详细介绍了Matlab中的矩阵基本操作,包括生成特定矩阵、计算行列式、逆矩阵、拼接矩阵以及对矩阵进行子块提取、矩阵运算。通过实例展示了如何进行矩阵的存储、读取、子块操作以及数值替换。此外,还涉及了矩阵的大小、类型检查以及随机矩阵的生成与处理。
摘要由CSDN通过智能技术生成

(一)矩阵的基本操作

1、 生成一个3×3的矩阵A,它的元素为你任意指定的9个不同的正整数,计算A的行列式并将其赋值给变量b,若b0,求出矩阵B=。若b=0,重新选择A。

将所生成的矩阵A及B连在一起,构成一个3×6的矩阵,并付给变量C,在workspace中观察C的类型、大小以及当前值。并用save 命令将C存储为一个数据文件以备下列题目利用Load命令调用;

解:      A=[87,98,21;547,985,624;555,547,698]

A =

    87    98    21

   547   985   624

   555   547   698

>> b=det(A)

b =

    21445160

>> B=inv(A)

B =

    0.0161   -0.0027    0.0019

   -0.0017    0.0023   -0.0020

   -0.0115    0.0003    0.0015

>> C=[A B]

C =

   87.0000   98.0000   21.0000    0.0161   -0.0027    0.0019

  547.0000  985.0000  624.0000   -0.0017    0.0023   -0.0020

  555.0000  547.0000  698.0000   -0.0115    0.0003    0.0015

2、 利用load命令调出C并取出它的1-2行,2-4列的子块,另存为一个2×3的矩阵d,生成一个与d相同大小的随机矩阵矩阵e,计算d+e,

d-e,,.*e , ,将结果中所有的对角线元素全部换为0.5。

解:>> save C

>> load C

>> d=C(1:2;2:4)

>> d=C(1:2,2:4)

d =

   98.0000   21.0000    0.0161

  985.0000  624.0000   -0.0017

>> e=[21,45,87;74,87,32]

e =

    21    45    87

    74    87    32

>> d+e

ans =

  1.0e+003 *

    0.1190    0.0660    0.0870

    1.0590    0.7110    0.0320

>> d-e

ans =</

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值