树形DP
何为树形DP
树形DP是指在“树”这种数据结构上进行的动态规划:给出一颗树,要求以最少的代价(或取得最大收益)完成给定的操作。通常这类问题规模比较大,枚举算法效率低,无法胜任,贪心算法不能求得最优解,因此需要用动态规划进行求解。
在树上做动态规划显得非常合适,因为树本身有“子结构”性质(树和子树),具有递归性,符合DP性质。相比线性DP,树形DP的状态转移方程更加直观。
树形动态规划(Tree DP)是一种动态规划算法,在处理树状结构(例如树、森林、有向无环图等)上的问题时非常常见和有效。树形动态规划通过将问题拆解为子问题,并利用子问题的解来求解更大规模的问题。
在树形动态规划中,我们需要定义一个适合的状态和状态转移方程。一般来说,状态可以定义为以当前节点为根的子树的某种性质,例如最大路径和、最长路径长度、最大权值和等等。而状态转移方程则描述了如何由子节点的状态计算当前节点的状态。
树形动态规划的典型做法是使用深度优先搜索(DFS)遍历整个树,在遍历过程中进行状态的计算和更新。通过递归地计算子节点的状态,并将其传递给父节点,可以得到整个树的最终状态。
在实现树形动态规划时,需要注意避免重复计算,可以使用记忆化搜索或者自底向上的方式进行计算。此外,还要注意选择合适的遍历顺序,以保证子问题的状态在计算当前节点状态时已经求解完毕。
总而言之,树形动态规划是一种针对树状结构问题的动态规划算法,通过拆解问题为子问题,并利用子问题的解求解更大规模的问题。它在解决树相关的问题时具有重要的应用价值。
树形DP例题
HDU-1520 Anniversary party

题目大意:
邀请员工参加party,但是为了避免员工和直属上司发生尴尬,规定员工和直属上司不能同时出席。
也就是每个人代表树中一个结点,每个结点拥有一个权值,相邻的父结点和子结点只能选择一个,问如何取才能使总权值之和最大。
员工编号从1到N。第一行输入包含数字N。1 < = N < = 6000。随后的N行中的每一行都包含相应员工的愉快度评级。欢乐评级是一个介于-128到127之间的整数。然后是描述主管关系树的T行。树规范的每一行都具有以下形式: L K 这意味着第K个员工是第L个员工的直接主管。输入以一行结束 0 0
解题思路:
根据DP的解题思路,定义状态为:
d p [ i ] [ 0 ] dp[i][0] dp[i][0],表示不选择当前结点时候的最优解
d p [ i ] [ 1 ] dp[i][1] dp[i][1],表示选择当前结点时候的最优解
其中状态转移方程分为下面两种情况:
- 不选择当前结点,则子结点可选可不选,取其中的最大值即可,也就是 d p [ u ] [ 0 ] + = m a x ( d p [ s o n ] [ 0 ] , d p [ s o n ] [ 1 ] ) dp[u][0] += max(dp[son][0], dp[son][1]) dp[u][0]+=max(dp[son][0],dp[son][1])
- 选择当前结点,则其子结点不能选, d p [ u ] [ 1 ] + = d p [ s o n ] [ 0 ] dp[u][1] += dp[son][0] dp[u][1]+=dp[son][0]
AC代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 6010;
vector<int>tree[maxn];
int dp[maxn][2], father[maxn], value[maxn];
void dfs(int u) {
dp[u][0] = 0; // 不参加party
dp[u][1] = value[u]; // 参加party
for(int i = 0; i < tree[u].size(); i++) {
int son = tree[u][i];
dfs(son); // 深搜子结点
dp[u][0] += max(dp[son][0], dp[son][1]); // 父结点不选,子结点可选可不选
dp[u

最低0.47元/天 解锁文章
670

被折叠的 条评论
为什么被折叠?



