“科大国创杯”2021年安徽省青少年信息学科普日活动(小学组)题解

1. 数色块(count)
【问题描述】
小可可进入小学一年级,数学老师为了锻炼同学们识别颜色和数数的能力,让同学们数一根长条上有多少个色块。
具体来说,就是给你一个 1×n 的方格,每个方格涂红色或蓝色,相邻的涂有相同颜色的方格算同一个色块,例如,下图 n=12,共有 8 个不同的色块。
在这里插入图片描述
现在,请你编程计算有多少个色块。
【输入格式】
输入有两行:
第一行一个整数 n,表示方格的长度。
第二行一个长度为 n 的字符串,字符串的第 i 个字符表示第 i 个方格涂的颜色,若 为’R’表示该方格涂的是红色,若为’B’表示该方格涂的是蓝色。
【输出格式】
输出一行,包括一个整数 ans,表示这条方格上共有 ans 个色块。
【输入输出样例 1】
输入

5
RRRRR

输出

1

【输入输出样例 2】
输入

12
RBBRRRBRBBRB

输出

8

【数据范围】
对于 20%的数据满足:方格的颜色全为’R’或’B’;
对于 50%的数据满足:1≤n≤2000;
对于 100%的数据满足:1≤n≤100000,字符串仅包含’R’、'B’两种字符。

#include<bits/stdc++.h>
using namespace std;
int main(){
	int n;
	cin >> n;
	string s;
	cin >> s;
	int ans = 1;
	for(int i=1;i<n;i++){
		if(s[i-1] == s[i])continue;//直接前后比较是否相等
		else ans++;
	}
	cout<<ans<<"\n";
	
	return 0;
}

2. 除法(divide)
【问题描述】
小可可进入了小学三年级,开始学习除法,一开始学习余数为 0 的除法,后来又学习了余数不为 0 的除法。
小可可数学很好,对被除数、除数、商、余数都弄得很清楚。有一天,他在思考这样的一个问题:给一个正整数 n 作为被除数,除数 k 可以取任意正整数,那么商有多少个不同的值呢?
例如:被除数 n=5,无论除数 k 取任何正整数,商只有 4 个不同的值,分别为 0, 1,2, 5,因为 5÷6 = 0…5,5÷5=1…0,5÷4=1…1,5÷3=1…2,
5÷2=2…1,5÷1=5…0。
小可可最近有点忙,他把这个问题交给了你。
【输入格式】
本题有多组测试数据。
第一行输入一个整数 T,表示测试数据的组数。
接下来 T 行,每行一个整数 n,表示被除数。
【输出格式】
输出 2*T 行,对于每组测试数据输出 2 行:
第 1 行输出一个整数 m,表示商有 m 个不同的值;
第 2 行输出 m 个整数,分别表示这 m 个不同的值,按从小到大的顺序输出,两
个数之间保留一个空格。
【输入输出样例 1】
输入

2
5
11

输出

4
0 1 2 5
6
0 1 2 3 5 11

【数据范围】
对于 50%的数据满足:1≤ n ≤10^5。
对于 100%的数据满足:1≤ T ≤10,1≤ n ≤10^9。

/*
由题意可知,0必定是商之一
对于正整数K,只需要遍历0~sqrt(K)即可
设1<=i<=(int)sqrt(K),分别将K/i和K/(K/i)的值存入数组ans[0]和ans[1]
然后从小到大输出 
*/
#include<bits/stdc++.h>
using namespace std;
int ans[2][100000];
//ans[0]从小到大存商
//ans[1]从大到小存商 
int main(){
	int T;
	cin>>T;
	while(T--){
		memset(ans,0,sizeof(ans)); 
		int n;
		cin>>n;
		int p=0,q=-1;//ans[0][0]存的商为0的情况 
		for(int i=1;i*i<=n;i++){
			int temp=n/i;
			if(n/i==n/temp){//商出现重叠,遍历结束break 
				ans[0][++p]=temp;
				break;
			}else{
				ans[0][++p]=i;
				ans[1][++q]=temp;
			}
		}
		cout<<p+q+2<<endl;//考虑ans[0][0]和ans[1][0]两个商,所以+2 
		for(int i=0;i<=p;i++)//正向输出 
			cout<<ans[0][i]<<" ";
		for(int j=q;j>=0;j--)//反向输出 
			cout<<ans[1][j]<<" ";
		cout<<endl;		
	} 
} 

3. 异或和(xorsum)
【问题描述】
小可可在五年级暑假开始学习编程,编程语言中有一种“按位异或(xor)”的运算引起了他的莫大兴趣。于是,他思考这样的一个问题:给一个长度为 n 的整数序列 A,如 何计算出满足下列两个条件的整数对 (l, r) 的数量。
1、1≤l≤r≤n;
2、Al xor Al+1 xor … xor Ar = Al + Al+1 + … + Ar
这里的 xor 就是按位异或(C 或 C++语言中“按位异或”运算符为^),求 a xor b 的原理是:将 a 和 b 转换为二进制,如果 a、b 的二进制表示中对应位置不相同,则异或结果的二进制表示中对应位置为 1,如果 a、b 的二进制表示中对应位置相同,则异或结果的二进制表示中对应位置为 0。例如:计算 10 xor 12,二进制表示 10 是 1010,二进制表示 12 是 1100,10 xor 12 结果的二进制表示是 0110,即为 6。具体为下式:在这里插入图片描述
小可可虽然提出了问题,但他自己不会解决,只好又要麻烦你解决啦。
【输入格式】
输入有两行:
第一行一个正整数 n,表示整数序列 A 的元素个数。
第二行有 n 个整数,第 i 个整数 Ai 表示整数序列 A 的第 i 个元素的值。
【输出格式】
输出一行,包括一个正整数,表示满足条件的整数对 (l, r) 的数量。
【输入输出样例 1】
输入

4
2 5 4 6

输出

5

【样例 1 解释】
(l, r) = (1, 1)、(2, 2)、(3, 3)、(4, 4)显然满足条件,还有(l, r) = (1, 2)也满足条件,因为 A1 xor A2=2 xor 5=7,而 A1 + A2=2 + 5=7。所以满足条件的整数对 (l, r) 的数量为 5。

【输入输出样例 2】
输入

19
885 8 1 128 83 32 256 206 639 16 4 128 689 32 8 64 885 969 1

输出

37

【数据范围】
对于 20%的数据满足:Ai = 0 (1≤ i ≤n)。
另有 30%的数据满足:1≤ n ≤ 5000。
对于 100%的数据满足:1≤ n ≤ 200000,0≤ Ai ≤ 2^20。

解题思路:
根据性质(A+B)-(A^B)=2(A&B)。那么我们可以试着推一下,根据按位考虑异或性质,每一位最多只有一个1。或者说,进位加法和不进位加法相等的情况只有不进位的情况。那么如果[l,r]区间的加法不进位,那么以r为右端点,左端点在[l,r]中的(l,r)都可行。新加入一个右端点,那么有可能会出现进位,往右移动左端点,使之不进位。因此我们可以推出,区间单调。


#include<bits/stdc++.h>
using namespace std;
using LL = long long;
int main(){
	LL n;
	cin >> n;
	LL a[n];
	for(LL i=0;i<n;i++) cin >> a[i];
	LL s = 0,l = 0,ans = 0;
	for(LL i=0;i<n;i++){
		while((s ^ a[i]) != s+a[i]) s ^= a[l++];
		ans += i - l + 1;
		s ^= a[i];
	}
	cout<<ans<<endl;
	
	return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值