基于trae-手把手开发项目---AI对话平台

Trae AI编辑器是一款基于人工智能的文本/代码辅助工具,旨在通过AI技术提升创作或编程效率。其核心功能可能包括:

  • 智能补全:根据上下文预测文本或代码,减少重复输入。
  • 多语言支持:覆盖自然语言(如中英文写作)和编程语言(如Python、JavaScript)。
  • 错误检测:语法纠错、代码调试建议等。
  • 风格优化:调整文本语气(正式/口语化)或代码规范。

2. 差异化亮点

  • 场景适配:可能针对不同用户群体(如开发者、作家、学生)提供定制化模板。
  • 交互体验:支持对话式操作(如通过指令生成内容)或快捷键快速调用AI。
  • 云端协作:部分版本可能支持多人实时编辑与AI协同评审。

基于 trae 开发一系列项目来实践其使用中的问题是一个很好的学习方式。以下是一个分阶段的规划建议,涵盖从基础到进阶的应用场景,帮助你逐步掌握 trae 并发现潜在问题:

开发流程

 一  准备阶段

1.1   和AI 提出想法 来完善需求

我希望开发一个AI对话平台 但是我不知道 有什么需要完善的 你可以向我提问我们一起完善这个项目需求

  AI的回复

第一阶段:项目定位
你的AI对话平台主要解决什么问题?(例如:提升客服效率、提供情感陪伴、教育辅导、娱乐互动)
目标用户是谁?(个人用户、企业客户、开发者、特定行业如医疗/法律)
与现有产品(如ChatGPT、客服机器人)相比,你的差异化优势是什么?
第二阶段:核心功能
基础功能:
是否需要支持多轮对话?是否要求上下文记忆(比如记住用户上次聊的内容)?
是否需要多模态交互(语音、图片、文件上传等)?
是否支持用户自定义对话角色或风格(如“幽默模式”“专业模式”)?
高级功能:
是否需要实时语音对话(类似电话)?
是否支持多语言或方言?
是否需要集成外部工具(如查天气、订机票、连接数据库)?
第三阶段:技术实现
技术选型:
计划自研AI模型,还是调用现有API(如GPT、Claude、开源模型)?
是否需要微调模型以适应特定领域(如医疗术语、二次元用语)?
对响应速度的要求(如1秒内响应)?
数据与隐私:
用户数据如何存储?是否需要端到端加密?
是否允许用户删除对话记录?是否合规(如GDPR)?
第四阶段:用户体验
交互设计:
平台以什么形式交付?(网页、APP、小程序、API接口)
是否需要“对话暂停/继续”功能?
是否提供对话历史导出(如PDF、TXT)?
反馈与优化:
如何收集用户反馈?(如“点赞/点踩”按钮、人工客服入口)
是否提供“人工接管”选项(当AI无法回答时转人工)?
第五阶段:商业与运营
商业模式:
免费+广告?订阅制?按次付费?
是否开放API供企业付费调用?
冷启动:
如何吸引第一批用户?(如邀请制、免费试用)
是否需要“预设对话场景”帮助用户快速上手(如“面试模拟”“英语练习”)?
第六阶段:风险与扩展
内容风险:
如何过滤敏感内容(如政治、暴力)?是否需要人工审核?
如果用户滥用平台(如生成恶意代码),如何应对?
未来扩展:
是否计划支持插件生态(如用户自建机器人)?
是否考虑硬件集成(如智能音箱、车载系统)?

1.2 回答AI的问题  完善需求

1 我需要聊天机器人,支持单轮对话,不需要语音,需要API 通过API秘钥实现付费,调用阿里通义千问大模型

2  完善需求文档 (AI输出)

一、需求文档(精简版)

1. 核心目标
  • 提供单轮文本对话的HTTP API服务,后端调用阿里云通义千问大模型(qwen-turbo)。
  • 通过API密钥实现按Token用量计费,支持商业化运营。
2. 功能需求
模块需求描述优先级
API接口支持JSON格式请求/响应,单次问答无上下文记忆P0
鉴权计费每个API_KEY绑定账户配额,按输入+输出Token总量计费P0
模型管理默认使用qwen-turbo,预留模型版本切换能力P1
3. 非功能需求
  • 性能:响应时间≤1秒(依赖阿里云API延迟)。
  • 安全:对话内容加密传输,不存储用户原始数据。
  • 合规:集成阿里云内容安全过滤,避免违规输出。
4. 扩展性预留
  • 未来可扩展多模型支持(如qwen-plus)或自定义微调模型

1.2 完善 产品文档 (AI输出)

1. 产品概述
1.1 目标
提供基于阿里云通义千问大模型(qwen-turbo)的单轮文本对话API服务,支持企业开发者通过API密钥实现按量付费调用。

1.2 核心特性
单轮对话:无上下文记忆的问答交互
商业化集成:按Token用量计费,支持API密钥管理
低延迟:平均响应时间≤800ms(依赖阿里云服务SLA)
2. 接口规范
2.1 请求示例
http
复制
POST /v1/chat/single-turn  
Headers: {
  "Authorization": "Bearer {API_KEY}",
  "Content-Type": "application/json"
}
Body: {
  "prompt": "如何学习机器学习?",
  "model": "qwen-turbo",  // 可选,默认qwen-turbo 
  "temperature": 0.5,     // 响应创造性控制(0-1)
  "max_tokens": 500       // 最大输出长度 
}
2.2 响应示例
json
复制
{
  "response": "学习机器学习需掌握线性代数和Python基础...",
  "usage": {
    "prompt_tokens": 15,
    "completion_tokens": 120 
  },
  "request_id": "req_20250516171212345"
}
2.3 错误码
代码    描述    解决方案
401    API_KEY无效    检查密钥或联系管理员
429    请求限频    降低调用频率或升级套餐
500    模型服务异常    重试或检查阿里云状态页
3. 计费与配额
3.1 计费规则
Token计算:输入+输出Token总和(1Token≈1.5个汉字)
单价:
qwen-turbo:¥0.002/千Token
qwen-plus(可选):¥0.01/千Token
3.2 配额管理
免费层:每月10万Token(仅测试用途)
企业套餐:
套餐    月费    包含Token    QPS限制
基础版    ¥299    500万    10次/秒
专业版    ¥1999    3000万    50次/秒
4. 安全与合规
4.1 数据安全
传输加密:强制HTTPS(TLS 1.3)
内容过滤:默认启用阿里云敏感词过滤(可关闭)
4.2 合规要求
用户协议:明确禁止生成违法、侵权内容
日志保留:调用记录存储7天,支持GDPR数据删除请求

1.3 技术文档 (AI输出)

产品技术文档(细化版)
一、技术架构设计
1.1 前端架构
技术栈
核心框架: Vue 3 + TypeScript
UI框架: Element Plus 2.4.x
扩展工具:
状态管理:Pinia 2.1.x
路由管理:Vue Router 4.2.x
桌面应用:Electron 28.x / Tauri 2.0(二选一)
构建工具:Vite 5.2.x
模块划分
模块名称	功能要点
用户认证模块	登录/注册弹窗、JWT令牌管理、第三方OAuth接入预留接口
对话界面模块	SSE/WebSocket实时流式响应、消息分页加载、Markdown渲染、对话上下文管理
支付验证模块	密钥激活表单、支付状态提示、Stripe/PayPal SDK接入
桌面集成模块	系统托盘菜单、全局快捷键、本地文件读写接口、自动更新检测
1.2 后端架构
技术栈
核心框架: Flask 3.0.x
数据库ORM: Flask-SQLAlchemy 3.1.x
辅助工具:
API文档生成:Flask-Swagger-UI 3.0
异步任务:Celery 5.3.x(预留)
文件处理:Flask-Uploads 0.2.1
加密组件:bcrypt 4.1.x
接口设计
python
复制
# API路由示例(app.py )
@app.route('/api/v1/chat',  methods=['POST'])
@jwt_required()
@rate_limit(60)  # 每分钟60次调用限制 
def chat_endpoint():
    """
    参数示例:
    {
        "prompt": "如何学习Vue?",
        "temperature": 0.7,
        "history_id": "uuid"
    }
    """
    # 调用阿里云API的封装逻辑 
    return stream_response(generate_answer())
 
@app.route('/api/v1/upload',  methods=['POST'])
def file_upload():
    # 支持PDF/DOCX/TXT格式验证 
    # 文件加密存储至./storage目录 
1.3 数据库设计
表结构(schema.sql )
sql
复制
-- 用户表 
CREATE TABLE users (
    id INTEGER PRIMARY KEY AUTOINCREMENT,
    uuid CHAR(36) NOT NULL UNIQUE,
    email VARCHAR(120) UNIQUE,
    hashed_password VARCHAR(200),
    api_key CHAR(64) NOT NULL,
    premium_expire TIMESTAMP,
    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP 
);
 
-- 对话记录表(分表设计)
CREATE TABLE chat_history_2024q2 (
    id INTEGER PRIMARY KEY,
    user_id INTEGER REFERENCES users(id),
    session_id CHAR(36),
    prompt TEXT NOT NULL,
    response TEXT,
    tokens_used INTEGER,
    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP 
) PARTITION BY RANGE (created_at);
 
-- 支付记录表 
CREATE TABLE payments (
    id INTEGER PRIMARY KEY,
    user_id INTEGER REFERENCES users(id),
    amount DECIMAL(10,2),
    currency CHAR(3),
    payment_gateway VARCHAR(20),
    tx_id VARCHAR(100) UNIQUE,
    status ENUM('pending','completed','failed'),
    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP 
);
二、项目结构优化
2.1 前端目录扩展
frontend/
├── src/
│   ├── assets/         # 静态资源 
│   ├── components/     # 通用组件 
│   │   ├── ChatBubble.vue  
│   │   └── KeyValidator.vue  
│   ├── layouts/        # 页面布局 
│   ├── router/         # 路由配置 
│   ├── stores/         # Pinia状态库 
│   ├── utils/          # 工具类 
│   │   ├── sseHandler.js  
│   │   └── encrypt.js  
│   └── views/          # 页面视图 
├── electron/           # 桌面应用封装 
│   ├── main.js  
│   └── preload.js  
2.2 后端目录扩展
backend/
├── config/
│   └── settings.py      # 环境变量配置 
├── blueprints/
│   ├── auth.py          # 认证模块 
│   └── chat.py          # 对话模块 
├── models/
│   ├── user.py          # 用户模型 
│   └── payment.py        # 支付模型 
├── services/
│   ├── llm_service.py   # 大模型调用封装 
│   └── aliyun_sdk/     # 阿里云SDK封装 
├── migrations/         # 数据库迁移脚本 
└── tests/              # 单元测试 
三、安全设计
传输层安全
全站强制HTTPS
敏感字段加密(密码使用bcrypt哈希,支付信息AES-256加密)
API防护
JWT令牌双验证机制(access_token + refresh_token)
敏感接口人机验证(reCAPTCHA v3集成)
SQL注入防护(使用ORM参数化查询)

技术文档 

1.1 基础环境
组件	版本要求	说明
操作系统	Windows 10+/macOS 12+/Linux kernel 5.15+	推荐使用Linux开发环境以获得最佳性能
Node.js	18.18.0 LTS 或更高	前端框架运行基础
Python	3.10.6 或更高	后端服务必需(需启用venv虚拟环境)
SQLite	3.37.0 或更高	默认集成于Python,无需单独安装
Git	2.35.1 或更高	版本控制工具
二、组件依赖安装
2.1 前端依赖(frontend/目录下执行)
bash
复制
# 使用pnpm加速安装(若未安装pnpm:npm install -g pnpm)  
pnpm install --frozen-lockfile  
 
# 核心依赖清单(部分)  
├── vue@3.4.21                 # Vue核心库  
├── element-plus@2.4.2         # UI组件框架  
├── @vueuse/core@11.2.0        # 响应式工具集  
├── pinia@2.1.7                # 状态管理  
├── tauri@2.0.0-beta.12        # 桌面应用封装(或electron@28.0.0)  
└── sse.js@3.5.0                # Server-Sent Events客户端  
2.2 后端依赖(backend/目录下执行)
bash
复制
# 创建并激活Python虚拟环境  
python -m venv .venv  
source .venv/bin/activate  # Linux/macOS  
.\.venv\Scripts\activate   # Windows  
 
# 通过requirements.txt 安装  
pip install -r requirements.txt   
 
# 核心依赖清单(部分)  
├── flask==3.0.2            # Web框架  
├── flask-sqlalchemy==3.1.1 # ORM组件  
├── python-jose==3.3.0      # JWT令牌处理  
├── alibabacloud-dashscope==1.6.3  # 阿里云大模型SDK  
└── cryptography==42.0.5    # 加密算法库  
三、初始化配置
3.1 环境变量配置
创建 .env 文件(切勿提交至版本库):

env
复制
# 前端环境变量(frontend/.env.development )  
VITE_API_BASE_URL=http://localhost:5000/api/v1  
VITE_STRIPE_PUBLIC_KEY=pk_test_xxxxxxxx  
 
# 后端环境变量(backend/.env)  
FLASK_SECRET_KEY=your_random_32bytes_string  
ALIYUN_API_KEY=sk-xxxxxxxxxxxx  
DATABASE_URI=sqlite:///../database/app.db   
3.2 数据库初始化
bash
复制
# 生成迁移脚本(首次执行)  
flask db init  
 
# 应用数据库变更  
flask db migrate -m "init tables"  
flask db upgrade  
3.3 开发环境启动
bash
复制
# 前端热更新开发模式(Web版)  
cd frontend  
pnpm dev  
 
# 桌面应用调试模式(需先安装tauri-cli)  
pnpm tauri dev  
 
# 后端服务启动  
cd backend  
flask run --port 5000 --debug  


阿里大模型调用示例:
import os
from openai import OpenAI

client = OpenAI(
    # 若没有配置环境变量,请用百炼API Key将下行替换为:api_key="sk-xxx",
    api_key=os.getenv("DASHSCOPE_API_KEY"),
    base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
completion = client.chat.completions.create(
    model="qwen-plus",  # 此处以qwen-plus为例,可按需更换模型名称。模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
    messages=[{'role': 'system', 'content': 'You are a helpful assistant.'},
                {'role': 'user', 'content': '你是谁?'}],
    stream=True,
    stream_options={"include_usage": True}
    )
for chunk in completion:
    print(chunk.model_dump_json())

    大模型返回内容的JSON格式:
## 阿里云大模型API流式响应参数说明

### 基础响应字段
| 参数名 | 类型 | 说明 |
|--------|------|------|
| `id` | string | 本次调用的唯一标识符,每个chunk对象相同 |
| `choices` | array | 模型生成内容数组,包含一个或多个choices对象 |
| `created` | integer | 请求创建时间戳(Unix时间戳) |
| `model` | string | 使用的模型名称(如"qwen-plus") |
| `object` | string | 固定为"chat.completion.chunk" |

### 流式数据字段
| 参数路径 | 类型 | 说明 |
|----------|------|------|
| `choices[0].delta.content` | string | 增量文本内容 |
| `choices[0].finish_reason` | string | 结束原因(null表示未结束) |

### 系统字段
| 参数名 | 类型 | 说明 |
|--------|------|------|
| `service_tier` | string | 固定为null |
| `system_fingerprint` | string | 固定为null |

### Token用量统计
| 参数路径 | 类型 | 说明 |
|----------|------|------|
| `usage` | object | 最后一个chunk显示的Token用量 |
| `usage.completion_tokens` | integer | 生成内容的Token数 |
| `usage.prompt_tokens` | integer | 提示词的Token数 |

### 典型流式响应示例
```json
{
  "id": "chatcmpl-123456",
  "choices": [{
    "delta": {
      "content": "你好",
      "role": "assistant"
    },
    "finish_reason": null
  }],
  "created": 1735113344,
  "model": "qwen-plus",
  "object": "chat.completion.chunk"
}


    

二 AI编辑器编写代码 (trae)

2.1 编写 用户规则

2.1.1 规则内容(根据自己的环境编写)

1. 请保持对话语言为中文/英文

2. 我的系统为 Windows

3. 请在生成代码时添加函数级注释

4. windos使用powershell,linux使用bash

5.在Windows PowerShell中, && 操作符不被支持。您可以使用分号

6. 命令行使用 尽量 命令.cmd

例如 npm.cmd 而不是 npm

7. 系统有python3.8  命令为python.exe或 python

执行任何python 命令前请先激活python虚拟环境

7.执行任何python命令前 需要确定是否加载环境,否则进行加载虚拟环境为.venv\Scripts\activate.bat 或 .venv\Scripts\activate.ps1 .\.venv\Scripts\activate

2.2 编写系统规则 (把之前编写好的该技术文档 放进去)

python  node 需要提前安装 

python 3.7 以上 

node 使用最新版本 (可以使用NVM管理比较好)

3 使用默认智能体开发

(这里也可以自己新增智能体-使用MCP新增一些功能进去)

输入 开始开发项目  AI编辑器开始自动生成代码 相关代码无脑 全部接受

3.1 生成前端

3.2 完成初版项目框架

3.3  要求AI编辑器再次检查代码

4  启动后端代码  (这里智能程度 依赖用户提示词  )

用户提示词 越细越好   比如我们的python环境就要求安装虚拟环境  启动虚拟环境等

这个不会启动成功  AI会犯傻 但是他会反思

#错误
flask.cmd run --port 5000 --debug
# 正确
python.exe app.py --port 5000 --debug
# 正确
python app.py

3.4.1 报错缺少依赖

这里提示缺少 ed 'flask'  (任何报错 无脑粘贴给AI)

选中报错--粘贴到会话

3.4.2  其他报错相同方式解决 直到启动无报错 

协助创建 DB 数据库 (database/app.db 没有创建 (可以提示下AI 这里会老犯傻))

1  大概都是缺少依赖的问题

2  操作文件没有创建

3 中文字符问题

根据AI提示 无脑安装就行

5  启动前端代码  (这里智能程度 依赖用户提示词  )

启动前端项目

6  AI人格调整 主要是调整 大模型的提示词

大模型提供了 系统提示词和用户提示词

    client = OpenAI(
        api_key=api_key,
        base_url="https://dashscope.aliyuncs.com/compatible-mode/v1"
    )
    completion = client.chat.completions.create(
        model="qwen-plus",
        messages=[{'role': 'system', 'content': sys_prompt},
                 {'role': 'user', 'content': prompt}],
        stream=True,
        stream_options={"include_usage": True}
    )
    return completion

系统提示词 我们可以编写你想要的角色进行带入,阿里的比较完善  直接可以简单提示词 就有不错的下过

    sys_prompt = '''

    你是一个原神可莉,你会根据用户的输入,生成原神可莉的回复。

    '''

四 项目整体结构

据项目代码和结构分析,这是一个基于Flask+Vue的AI对话系统,主要功能如下:

1. 核心功能模块

- AI对话服务 :通过阿里云百炼API(qwen-plus模型)实现智能对话
- 用户管理 :用户注册、API密钥验证
- 对话记录 :消息存储与检索
2. 前端架构

- 技术栈:Vue 3 + Element Plus
- 核心组件:ChatWindow.vue (对话界面)
- 构建工具:Vite
3. 后端架构、

# 主要API接口
@app.route('/api/chat', methods=['POST'])  # 对话接口
@app.route('/api/v1/users', methods=['POST'])  # 用户注册
@app.route('/api/verify_key', methods=['POST'])  # API密钥验证

4. 数据库设计

- users表:存储用户信息和API密钥
- chat_messages表:记录对话历史
- 使用SQLite作为数据库引擎
5. 特色功能

- 流式响应处理:实时返回AI生成内容
- API密钥验证机制:@api_key_required装饰器
- 完整的日志记录系统
6. 部署结构

backend/   # Flask服务端
  |- app.py         # 主入口
  |- utils.py       # 工具函数
  |- models.py      # 数据模型
frontend/  # Vue前端
  |- js/components/ # 组件目录

7. 安全机制

- API密钥验证
- 请求参数校验
- 数据库操作使用参数化查询

项目代码示例位置:

GitCode - 全球开发者的开源社区,开源代码托管平台

03-17
<think>嗯,用户想查找关于trae-cn的IT技术信息。首先得确认trae-cn是什么。可能是一个技术项目、工具或者库的名字?先进行网络搜索看看。 搜索结果提到trae-cn是一个基于TypeScript的HTTP客户端库,类似于axios但更轻量。好的,那需要整理它的核心功能、安装方法、使用示例以及和axios的比较。用户可能需要知道如何开始使用,所以安装步骤和基本示例很重要。 另外,用户可能关心与axios的区别,这有助于他们决定是否采用trae-cn。需要对比两者的特性,比如拦截器、TS支持、体积等。还要注意可能的社区资源,比如GitHub仓库和中文文档,方便用户深入查阅。 接下来要确保回答结构符合要求:分方法或步骤,换行分隔,避免第一人称和步骤词汇。每个部分用标题,然后详细说明。最后添加相关问题,需基于内容,比如如何迁移、高级功能、性能对比等。 需要检查格式是否正确,特别是代码块和数学公式的格式。确保没有引用堆砌在末尾,每个引用都嵌入在相关内容中。最后的相关问题部分要严格按格式,使用正确标号,标题在同一行。</think>**trae-cn技术信息整理** --- ### **核心功能与定位** trae-cn是基于TypeScript开发的轻量级HTTP客户端库,专为浏览器和Node.js环境设计。其定位为替代axios的简化方案,核心功能包括请求/响应拦截器、自动JSON解析、TypeScript原生支持及自定义配置。支持Promise API,兼容现代前端框架(如React、Vue)。 --- ### **安装与基础用法** 通过npm或yarn安装: ```bash npm install trae-cn # 或 yarn add trae-cn ``` 基础请求示例: ```typescript import trae from 'trae-cn'; // GET请求 trae.get('https://api.example.com/data') .then(response => console.log(response.data)) .catch(error => console.error(error)); // POST请求 trae.post('https://api.example.com/create', { name: 'test' }) .then(response => console.log(response.data)); ``` --- ### **与axios的对比** 1. **体积差异**:trae-cn压缩后约5KB,axios约13KB。 2. **功能精简**:trae-cn省略了axios的`cancelToken`等进阶功能,保留核心HTTP方法。 3. **TypeScript支持**:trae-cn原生支持TS类型推断,无需额外类型声明包。 4. **拦截器语法**: ```typescript // 请求拦截 trae.interceptors.request.use(config => { config.headers.Authorization = 'Bearer token'; return config; }); // 响应拦截 trae.interceptors.response.use( response => response.data, error => Promise.reject(error) ); ``` --- ### **适用场景** - 轻量级前端项目,需减少依赖体积。 - TypeScript项目需强类型HTTP客户端。 - 基础RESTful API交互场景,无需复杂取消请求功能。 --- ### **资源与社区** - **GitHub仓库**:[trae-cn GitHub](https://github.com/trae-official/trae-cn)(含文档与Issue讨论) - **中文文档**:提供配置项、拦截器、错误处理等详细说明。 - **扩展插件**:支持通过中间件扩展功能(如缓存、日志)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值