通义灵码编码插件支持MCP

通义灵码MCP功能集成概述

通义灵码已深度集成魔搭社区(ModelScope)的MCP(Model Context Protocol)服务,为开发者提供了在IDE中直接调用AI能力的便捷通道。MCP作为标准化协议,通过定义Resources、Prompts和Tools三大核心能力,使开发者能够以模块化方式为LLM扩展各种交互功能。在IntelliJ IDEA和PyCharm中,开发者可以无缝使用MCP广场提供的各类服务,包括天气查询和Elasticsearch等实用工具

AI编码插件的优势就是 利用已有的编码软件非常成熟   和已有的使用习惯。 增加AI功能 如今有了MCP功能 可能符合部分人 无法或者不适应  其他AI 编码器的 如何

Cursor 国外

trae 国内

本地编码集 MCP安装截图

主要适用了以下2个

天气MCP服务使用指南

魔搭社区的天气MCP服务基于高德地图API实现,提供了完整的天气数据查询功能。使用时需要先在MCP市场开通AmapMaps服务,该服务可以查询任意城市未来7天的天气数据,包括温度、湿度、风速、降水量等关键气象指标。调用时需注意:

  1. 角色设定为专业气象数据分析师
  2. 明确查询城市名称
  3. 可选择使用QuickChart服务将数据可视化
  4. 服务限制包括仅提供天气相关数据,且输出必须准确无误 详细参数配置建议参考魔搭社区文档,其中包含了完整的认证方式和请求示例。

Elasticsearch MCP服务配置要点

Elasticsearch MCP服务提供了强大的全文检索能力,在IDE中调用时需特别注意认证方式:

  1. 基础认证支持API KEY方式
  2. 完整认证方案包含用户名/密码参数(需参考MCP广场文档)
  3. 服务地址配置需使用魔搭提供的专用endpoint
  4. 索引管理需遵循服务限制条件 该服务特别适合需要集成搜索功能的开发场景,通义灵码可自动生成基础的ES查询代码框架,开发者只需补充业务逻辑即可。

配置选项

Elasticsearch MCP 服务器支持配置选项以连接到您的 Elasticsearch:

NOTE

您必须提供 API 密钥或同时提供用户名和密码进行身份验证。

环境变量描述是否必需
ES_URL您的 Elasticsearch 实例 URL
ES_API_KEY用于身份验证的 Elasticsearch API 密钥
ES_USERNAME用于基本身份验证的 Elasticsearch 用户名
ES_PASSWORD用于基本身份验证的 Elasticsearch 密码
ES_CA_CERT自定义 CA 证书路径,用于 Elasticsearch SSL/TLS

本地开发

NOTE

如果您想要修改或扩展 MCP 服务器,请遵循以下本地开发步骤。

  1. 使用正确的 Node.js 版本

     

    nvm use

  2. 安装依赖项

     

    npm install

  3. 构建项目

     

    npm run build

  4. 在 Claude Desktop App 中本地运行

    • 打开 Claude Desktop App
    • 进入 设置 > 开发者 > MCP 服务器
    • 点击 编辑配置 并添加一个新的 MCP 服务器,配置如下:
    {
      "mcpServers": {
        "elasticsearch-mcp-server-local": {
          "command": "node",
          "args": [
            "/path/to/your/project/dist/index.js"
          ],
          "env": {
            "ES_URL": "your-elasticsearch-url",
            "ES_API_KEY": "your-api-key"
          }
        }
      }
    }
    
  5. 使用 MCP 检查器进行调试

     

    ES_URL=your-elasticsearch-url ES_API_KEY=your-api-key npm run inspector

    这将启动 MCP 检查器,允许您调试和分析请求。您应该会看到:

    Starting MCP inspector... Proxy server listening on port 3000 🔍 MCP Inspector is up and running at http://localhost:5173 🚀

### MCP 技术概述 MCP 是由 Anthropic 开发的一种用于构建 AI Agent 的技术框架,旨在简化开发者创建和部署人工智能驱动工具的过程[^2]。通过该框架,可以轻松集成多种大模型(LLMs),包括但不限于 DeepSeek 和其他开源模型。 通义千问作为阿里巴巴集团旗下的超大规模语言模型,在功能性和活性上具有显著优势。要将通义千问与 MCP 进行集成,可以通过以下方式实现: --- ### 集成方案分析 #### 1. 使用 Docker Compose 构建环境 为了快速启动并运行 MCP-Bridge 容器,可采用 `docker-compose` 命令来完成基础环境搭建。具体命令如下所示: ```bash docker compose up --build ``` 此操作会自动拉取所需镜像并初始化容器化服务,从而为后续的开发工作提供稳定的运行平台[^1]。 #### 2. 调整服务器端逻辑以适配通义千问 API 基于 MCP 提供的功能接口定义机制,可通过扩展其内置装饰器函数来自定义业务逻辑。例如,下面展示了一个简单的例子——调用通义千问的服务来进行两数比较处理: ```python from mcp.server.fastmcp import FastMCP import requests mcp = FastMCP("comparisonService") @mcp.tool() def compare_with_qwen(num1, num2): payload = { 'prompt': f'比较 {num1} 和 {num2}, 返回哪个更大或者相等', 'max_tokens': 50, 'temperature': 0.7 } response = requests.post( url="https://your-qwen-api-endpoint.com/v1/completions", headers={"Authorization": "Bearer YOUR_API_KEY"}, json=payload ) result = response.json().get('choices', [{}])[0].get('text', '').strip() return result or "无法获取结果" if __name__ == "__main__": mcp.run(transport='stdio') ``` 上述代片段展示了如何借助 HTTP 请求向通义千问发送查询请求,并解析返回的结果数据[^3]。 #### 3. 结合资源管理模块增强交互体验 除了核心计算能力外,还可以进一步利用 MCP 中的资源声明特性,增加更多维度上的用户体验优化措施。比如引入问候语生成组件: ```python @mcp.resource("welcomeMessage://{username}") def generate_welcome_message(username): prompt_template = f"欢迎来到我们的应用,请称呼用户为{username}" api_response = call_qwen_api(prompt_template) return api_response ``` 这里假设存在一个辅助方法 `call_qwen_api()` 来封装实际通信细节。 --- ### 总结 综上所述,MCP 不仅能够帮助技术人员迅速建立起强大的 AI 应用程序原型,而且还能活对接不同类型的预训练模型,如通义千问这样的高性能解决方案。这使得整个生态体系更加开放多元,同时也促进了行业标准化进程的发展趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值