什么是平衡二叉树
阅读本篇博客前最好对二叉搜索树有一定了解。二叉搜索树
二叉搜索树在最差的情况会退化成线性查找,所以才有了平衡二叉树。
如下图所示:分别演示了平衡与不平衡的二叉树
平衡二叉树每个节点都有一个平衡因子(图中红色数字),他的值为节点左子树树高-右子树树高
平衡二叉树每个节点的左右孩子高度差<=1,平衡因子只能取-1,0,1三个值,否则就需要调整。
旋转
RR型,左旋
对于RR型不平衡树,是因为树偏向右边,为此我们需要对自底向上的第一个不平衡节点进行一次左旋。
如上图所示:插入节点3的时候导致了1节点的不平衡,为此我们需要把红框圈住的往左边旋转,就自然变成了x的左孩子,x之前的左孩子T2变成y的右孩子。
LL型,右旋
对于LL型不平衡树,是因为树偏向左边,为此我们需要对自底向上的第一个不平衡节点进行一次右旋。
如上图所示:插入节点1的时候导致了节点3的不平衡,为此我们需要把红框圈住的往右边旋转,就自然变成了x的右孩子,x之前的右孩子T3变成y的左孩子。
LR型,先左旋再右旋
对于LR型,需要先对自底向上的第一个不平衡节点的左孩子进行一次左旋,变成LL型,在对自底向上的第一个不平衡节点进行一次右旋即可。
如图:插入节点2的时候导致了节点y的不平衡,为此先对z左旋一次得到LL型,再对y右旋一次即可
RL型,先右旋再左旋
对于RL型,需要先对自底向上的第一个不平衡节点的右孩子进行一次右旋,变成RR型,在对自底向上的第一个不平衡节点进行一次左旋即可。
如图:插入节点2的时候导致了节点y的不平衡,为此先对z右旋一次得到RR型,再对y左旋一次即可
源码
AVLTree
public class AVLTree<K extends Comparable<K>, V> {
private class Node{
public K key;
public V value;
public Node left, right;
public int height;
public Node(K key, V value){
this.key = key;
this.value = value;
height = 1;
}
}
private Node root;
private int size;
public int getSize(){
return size;
}
public boolean isEmpty(){
return size == 0;
}
// 判断该二叉树是否是一棵二分搜索树
public boolean isBST(){
ArrayList<K> keys = new ArrayList<>();
inOrder(root, keys);
for(int i = 1 ; i < keys.size() ; i ++)
if(keys.get(i - 1).compareTo(keys.get(i)) > 0)
return false;
return true;
}
private void inOrder(Node node, ArrayList<K> keys){
if(node == null)
return;
inOrder(node.left, keys);
keys.add(node.key);
inOrder(node.right, keys);
}
// 判断该二叉树是否是一棵平衡二叉树
public boolean isBalanced(){
return isBalanced(root);
}
// 判断以Node为根的二叉树是否是一棵平衡二叉树,递归算法
private boolean isBalanced(Node node){
if(node == null)
return true;
int balanceFactor = getBalanceFactor(node);
if(Math.abs(balanceFactor) > 1)
return false;
return isBalanced(node.left) && isBalanced(node.right);
}
// 获得节点node的高度
private int getHeight(Node node){
if(node == null)
return 0;
return node.height;
}
// 获得节点node的平衡因子
private int getBalanceFactor(Node node){
if(node == null)
return 0;
return getHeight(node.left) - getHeight(node.right);
}
// 对节点y进行向右旋转操作,返回旋转后新的根节点x
// y x
// / \ / \
// x T4 向右旋转 (y) z y
// / \ - - - - - - - -> / \ / \
// z T3 T1 T2 T3 T4
// / \
// T1 T2
private Node rightRotate(Node y) {
Node x = y.left;
Node T3 = x.right;
// 向右旋转过程
x.right = y;
y.left = T3;
// 更新height
y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
return x;
}
// 对节点y进行向左旋转操作,返回旋转后新的根节点x
// y x
// / \ / \
// T1 x 向左旋转 (y) y z
// / \ - - - - - - - -> / \ / \
// T2 z T1 T2 T3 T4
// / \
// T3 T4
private Node leftRotate(Node y) {
Node x = y.right;
Node T2 = x.left;
// 向左旋转过程
x.left = y;
y.right = T2;
// 更新height
y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
return x;
}
// 向二分搜索树中添加新的元素(key, value)
public void add(K key, V value){
root = add(root, key, value);
}
// 向以node为根的二分搜索树中插入元素(key, value),递归算法
// 返回插入新节点后二分搜索树的根
private Node add(Node node, K key, V value){
if(node == null){
size ++;
return new Node(key, value);
}
if(key.compareTo(node.key) < 0)
node.left = add(node.left, key, value);
else if(key.compareTo(node.key) > 0)
node.right = add(node.right, key, value);
else // key.compareTo(node.key) == 0
node.value = value;
//如果高度没有改变,无需旋转 todo
// 更新height
node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));
// 计算平衡因子
int balanceFactor = getBalanceFactor(node);
// 平衡维护
// LL
if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0)
return rightRotate(node);
// RR
if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0)
return leftRotate(node);
// LR
if (balanceFactor > 1 && getBalanceFactor(node.left) < 0) {
node.left = leftRotate(node.left);
return rightRotate(node);
}
// RL
if (balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
node.right = rightRotate(node.right);
return leftRotate(node);
}
return node;
}
// 返回以node为根节点的二分搜索树中,key所在的节点
private Node getNode(Node node, K key){
if(node == null)
return null;
if(key.equals(node.key))
return node;
else if(key.compareTo(node.key) < 0)
return getNode(node.left, key);
else // if(key.compareTo(node.key) > 0)
return getNode(node.right, key);
}
public boolean contains(K key){
return getNode(root, key) != null;
}
public V get(K key){
Node node = getNode(root, key);
return node == null ? null : node.value;
}
public void set(K key, V newValue){
Node node = getNode(root, key);
if(node == null)
throw new IllegalArgumentException(key + " doesn't exist!");
node.value = newValue;
}
// 返回以node为根的二分搜索树的最小值所在的节点
private Node minimum(Node node){
if(node.left == null)
return node;
return minimum(node.left);
}
// 从二分搜索树中删除键为key的节点
public V remove(K key){
Node node = getNode(root, key);
if(node != null){
root = remove(root, key);
return node.value;
}
return null;
}
private Node remove(Node node, K key){
if( node == null )
return null;
Node retNode;
if( key.compareTo(node.key) < 0 ){
node.left = remove(node.left , key);
// return node;
retNode = node;
}
else if(key.compareTo(node.key) > 0 ){
node.right = remove(node.right, key);
// return node;
retNode = node;
}
else{ // key.compareTo(node.key) == 0
// 待删除节点左子树为空的情况
if(node.left == null){
Node rightNode = node.right;
node.right = null;
size --;
// return rightNode;
retNode = rightNode;
}
// 待删除节点右子树为空的情况
else if(node.right == null){
Node leftNode = node.left;
node.left = null;
size --;
// return leftNode;
retNode = leftNode;
}
// 待删除节点左右子树均不为空的情况
else{
// 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
// 用这个节点顶替待删除节点的位置
Node successor = minimum(node.right);
//successor.right = removeMin(node.right);
successor.right = remove(node.right, successor.key);
successor.left = node.left;
node.left = node.right = null;
// return successor;
retNode = successor;
}
}
if(retNode == null)
return null;
// 更新height
retNode.height = 1 + Math.max(getHeight(retNode.left), getHeight(retNode.right));
// 计算平衡因子
int balanceFactor = getBalanceFactor(retNode);
// 平衡维护
// LL
if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0)
return rightRotate(retNode);
// RR
if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0)
return leftRotate(retNode);
// LR
if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) {
retNode.left = leftRotate(retNode.left);
return rightRotate(retNode);
}
// RL
if (balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) {
retNode.right = rightRotate(retNode.right);
return leftRotate(retNode);
}
return retNode;
}
}
AVLSet
public interface Set<E> {
void add(E e);
boolean contains(E e);
void remove(E e);
int getSize();
boolean isEmpty();
}
public class AVLSet<E extends Comparable<E>> implements Set<E> {
private AVLTree<E, Object> avl;
public AVLSet(){
avl = new AVLTree<>();
}
@Override
public int getSize(){
return avl.getSize();
}
@Override
public boolean isEmpty(){
return avl.isEmpty();
}
@Override
public void add(E e){
avl.add(e, null);
}
@Override
public boolean contains(E e){
return avl.contains(e);
}
@Override
public void remove(E e){
avl.remove(e);
}
}
AVLMap
public interface Map<K, V> {
void add(K key, V value);
boolean contains(K key);
V get(K key);
void set(K key, V newValue);
V remove(K key);
int getSize();
boolean isEmpty();
}
public class AVLMap<K extends Comparable<K>, V> implements Map<K, V> {
private AVLTree<K, V> avl;
public AVLMap(){
avl = new AVLTree<>();
}
@Override
public int getSize(){
return avl.getSize();
}
@Override
public boolean isEmpty(){
return avl.isEmpty();
}
@Override
public void add(K key, V value){
avl.add(key, value);
}
@Override
public boolean contains(K key){
return avl.contains(key);
}
@Override
public V get(K key){
return avl.get(key);
}
@Override
public void set(K key, V newValue){
avl.set(key, newValue);
}
@Override
public V remove(K key){
return avl.remove(key);
}
}