数据结构-平衡二叉树

什么是平衡二叉树

阅读本篇博客前最好对二叉搜索树有一定了解。二叉搜索树
二叉搜索树在最差的情况会退化成线性查找,所以才有了平衡二叉树。
如下图所示:分别演示了平衡与不平衡的二叉树
在这里插入图片描述
平衡二叉树每个节点都有一个平衡因子(图中红色数字),他的值为节点左子树树高-右子树树高
平衡二叉树每个节点的左右孩子高度差<=1,平衡因子只能取-1,0,1三个值,否则就需要调整。

旋转

RR型,左旋

对于RR型不平衡树,是因为树偏向右边,为此我们需要对自底向上的第一个不平衡节点进行一次左旋。
在这里插入图片描述
如上图所示:插入节点3的时候导致了1节点的不平衡,为此我们需要把红框圈住的往左边旋转,就自然变成了x的左孩子,x之前的左孩子T2变成y的右孩子。

LL型,右旋

对于LL型不平衡树,是因为树偏向左边,为此我们需要对自底向上的第一个不平衡节点进行一次右旋。
在这里插入图片描述

如上图所示:插入节点1的时候导致了节点3的不平衡,为此我们需要把红框圈住的往右边旋转,就自然变成了x的右孩子,x之前的右孩子T3变成y的左孩子。

LR型,先左旋再右旋

在这里插入图片描述
对于LR型,需要先对自底向上的第一个不平衡节点的左孩子进行一次左旋,变成LL型,在对自底向上的第一个不平衡节点进行一次右旋即可。
如图:插入节点2的时候导致了节点y的不平衡,为此先对z左旋一次得到LL型,再对y右旋一次即可

RL型,先右旋再左旋

在这里插入图片描述
对于RL型,需要先对自底向上的第一个不平衡节点的右孩子进行一次右旋,变成RR型,在对自底向上的第一个不平衡节点进行一次左旋即可。
如图:插入节点2的时候导致了节点y的不平衡,为此先对z右旋一次得到RR型,再对y左旋一次即可

源码

AVLTree

public class AVLTree<K extends Comparable<K>, V> {

    private class Node{
        public K key;
        public V value;
        public Node left, right;
        public int height;

        public Node(K key, V value){
            this.key = key;
            this.value = value;
            height = 1;
        }
    }

    private Node root;
    private int size;


    public int getSize(){
        return size;
    }

    public boolean isEmpty(){
        return size == 0;
    }

    // 判断该二叉树是否是一棵二分搜索树
    public boolean isBST(){

        ArrayList<K> keys = new ArrayList<>();
        inOrder(root, keys);
        for(int i = 1 ; i < keys.size() ; i ++)
            if(keys.get(i - 1).compareTo(keys.get(i)) > 0)
                return false;
        return true;
    }

    private void inOrder(Node node, ArrayList<K> keys){

        if(node == null)
            return;

        inOrder(node.left, keys);
        keys.add(node.key);
        inOrder(node.right, keys);
    }

    // 判断该二叉树是否是一棵平衡二叉树
    public boolean isBalanced(){
        return isBalanced(root);
    }

    // 判断以Node为根的二叉树是否是一棵平衡二叉树,递归算法
    private boolean isBalanced(Node node){

        if(node == null)
            return true;

        int balanceFactor = getBalanceFactor(node);
        if(Math.abs(balanceFactor) > 1)
            return false;
        return isBalanced(node.left) && isBalanced(node.right);
    }

    // 获得节点node的高度
    private int getHeight(Node node){
        if(node == null)
            return 0;
        return node.height;
    }

    // 获得节点node的平衡因子
    private int getBalanceFactor(Node node){
        if(node == null)
            return 0;
        return getHeight(node.left) - getHeight(node.right);
    }

    // 对节点y进行向右旋转操作,返回旋转后新的根节点x
    //        y                              x
    //       / \                           /   \
    //      x   T4     向右旋转 (y)        z     y
    //     / \       - - - - - - - ->    / \   / \
    //    z   T3                       T1  T2 T3 T4
    //   / \
    // T1   T2
    private Node rightRotate(Node y) {
        Node x = y.left;
        Node T3 = x.right;

        // 向右旋转过程
        x.right = y;
        y.left = T3;

        // 更新height
        y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
        x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;

        return x;
    }

    // 对节点y进行向左旋转操作,返回旋转后新的根节点x
    //    y                             x
    //  /  \                          /   \
    // T1   x      向左旋转 (y)       y     z
    //     / \   - - - - - - - ->   / \   / \
    //   T2  z                     T1 T2 T3 T4
    //      / \
    //     T3 T4
    private Node leftRotate(Node y) {
        Node x = y.right;
        Node T2 = x.left;

        // 向左旋转过程
        x.left = y;
        y.right = T2;

        // 更新height
        y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
        x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;

        return x;
    }

    // 向二分搜索树中添加新的元素(key, value)
    public void add(K key, V value){
        root = add(root, key, value);
    }

    // 向以node为根的二分搜索树中插入元素(key, value),递归算法
    // 返回插入新节点后二分搜索树的根
    private Node add(Node node, K key, V value){

        if(node == null){
            size ++;
            return new Node(key, value);
        }

        if(key.compareTo(node.key) < 0)
            node.left = add(node.left, key, value);
        else if(key.compareTo(node.key) > 0)
            node.right = add(node.right, key, value);
        else // key.compareTo(node.key) == 0
            node.value = value;
        //如果高度没有改变,无需旋转 todo
        // 更新height
        node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));

        // 计算平衡因子
        int balanceFactor = getBalanceFactor(node);

        // 平衡维护
        // LL
        if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0)
            return rightRotate(node);

        // RR
        if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0)
            return leftRotate(node);

        // LR
        if (balanceFactor > 1 && getBalanceFactor(node.left) < 0) {
            node.left = leftRotate(node.left);
            return rightRotate(node);
        }

        // RL
        if (balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
            node.right = rightRotate(node.right);
            return leftRotate(node);
        }

        return node;
    }

    // 返回以node为根节点的二分搜索树中,key所在的节点
    private Node getNode(Node node, K key){

        if(node == null)
            return null;

        if(key.equals(node.key))
            return node;
        else if(key.compareTo(node.key) < 0)
            return getNode(node.left, key);
        else // if(key.compareTo(node.key) > 0)
            return getNode(node.right, key);
    }

    public boolean contains(K key){
        return getNode(root, key) != null;
    }

    public V get(K key){

        Node node = getNode(root, key);
        return node == null ? null : node.value;
    }

    public void set(K key, V newValue){
        Node node = getNode(root, key);
        if(node == null)
            throw new IllegalArgumentException(key + " doesn't exist!");

        node.value = newValue;
    }

    // 返回以node为根的二分搜索树的最小值所在的节点
    private Node minimum(Node node){
        if(node.left == null)
            return node;
        return minimum(node.left);
    }

    // 从二分搜索树中删除键为key的节点
    public V remove(K key){

        Node node = getNode(root, key);
        if(node != null){
            root = remove(root, key);
            return node.value;
        }
        return null;
    }

    private Node remove(Node node, K key){

        if( node == null )
            return null;

        Node retNode;
        if( key.compareTo(node.key) < 0 ){
            node.left = remove(node.left , key);
            // return node;
            retNode = node;
        }
        else if(key.compareTo(node.key) > 0 ){
            node.right = remove(node.right, key);
            // return node;
            retNode = node;
        }
        else{   // key.compareTo(node.key) == 0

            // 待删除节点左子树为空的情况
            if(node.left == null){
                Node rightNode = node.right;
                node.right = null;
                size --;
                // return rightNode;
                retNode = rightNode;
            }

            // 待删除节点右子树为空的情况
            else if(node.right == null){
                Node leftNode = node.left;
                node.left = null;
                size --;
                // return leftNode;
                retNode = leftNode;
            }

            // 待删除节点左右子树均不为空的情况
            else{
                // 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
                // 用这个节点顶替待删除节点的位置
                Node successor = minimum(node.right);
                //successor.right = removeMin(node.right);
                successor.right = remove(node.right, successor.key);
                successor.left = node.left;

                node.left = node.right = null;

                // return successor;
                retNode = successor;
            }
        }

        if(retNode == null)
            return null;

        // 更新height
        retNode.height = 1 + Math.max(getHeight(retNode.left), getHeight(retNode.right));

        // 计算平衡因子
        int balanceFactor = getBalanceFactor(retNode);

        // 平衡维护
        // LL
        if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0)
            return rightRotate(retNode);

        // RR
        if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0)
            return leftRotate(retNode);

        // LR
        if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) {
            retNode.left = leftRotate(retNode.left);
            return rightRotate(retNode);
        }

        // RL
        if (balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) {
            retNode.right = rightRotate(retNode.right);
            return leftRotate(retNode);
        }

        return retNode;
    }
    
}

AVLSet

public interface Set<E> {

    void add(E e);
    boolean contains(E e);
    void remove(E e);
    int getSize();
    boolean isEmpty();
}
public class AVLSet<E extends Comparable<E>> implements Set<E> {

    private AVLTree<E, Object> avl;

    public AVLSet(){
        avl = new AVLTree<>();
    }

    @Override
    public int getSize(){
        return avl.getSize();
    }

    @Override
    public boolean isEmpty(){
        return avl.isEmpty();
    }

    @Override
    public void add(E e){
        avl.add(e, null);
    }

    @Override
    public boolean contains(E e){
        return avl.contains(e);
    }

    @Override
    public void remove(E e){
        avl.remove(e);
    }
}

AVLMap

public interface Map<K, V> {

    void add(K key, V value);
    boolean contains(K key);
    V get(K key);
    void set(K key, V newValue);
    V remove(K key);
    int getSize();
    boolean isEmpty();
}
public class AVLMap<K extends Comparable<K>, V> implements Map<K, V> {

    private AVLTree<K, V> avl;

    public AVLMap(){
        avl = new AVLTree<>();
    }

    @Override
    public int getSize(){
        return avl.getSize();
    }

    @Override
    public boolean isEmpty(){
        return avl.isEmpty();
    }

    @Override
    public void add(K key, V value){
        avl.add(key, value);
    }

    @Override
    public boolean contains(K key){
        return avl.contains(key);
    }

    @Override
    public V get(K key){
        return avl.get(key);
    }

    @Override
    public void set(K key, V newValue){
        avl.set(key, newValue);
    }

    @Override
    public V remove(K key){
        return avl.remove(key);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值