poj 1797

题目概述

城市中有N个地点,编号1到N,你在1号开了个工厂,要把货送到N号的市场,城市中有M条双向路,每条路有负重上限,你每次运的货重量不能超过途中任何一段路的负重上限,问每次最多可运多少货

时限

3000ms/9000ms

输入

第一行正整数times,其后times组数据,每组数据第一行两个正整数N,M,其后M行,每行三个正整数,代表一条路连接的两个地点及其负重上限

限制

1<=N<=1000;1<=负重上限<=1000000

输出

每组数据输出在两行中,第一行
Scenario #A:
其中A为数据序数,从1开始,下一行一个数,为所求最多运货量,每组输出后带一空行

样例输入

1
3 3
1 2 3
1 3 4
2 3 5

样例输出

Scenario #1:
4

讨论

图论,单源最短路的变形(估计最小生成树也能做),bellman_ford队列优化算法,首先起点到自己肯定是无穷承重,从一个点到其他点的时候要么被两点之间的路卡,要么被到这个点之前的路卡,从二者中选一个小的,如此处理所有点直到终点
实现方面没有要说的,题目就这么直白,额特地尝试了一下动态邻接表,静态邻接表,邻接矩阵的效率,都会贴出来,但是注释只给静态邻接表的,毕竟都差不多

题解状态

静态邻接表:1376K,313MS,C++,1259B
邻接矩阵:4132K,422MS,C++,1005B
动态邻接表:1484K,985MS,C++,1183B

题解代码

静态邻接表

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
#define INF 0x3f3f3f3f
#define MAXN 1003
#define memset0(a) memset(a,0,sizeof(a))

struct Edge//边的结构 实际上完全可以拆分成三个数组
{
    int to, w, next;
    Edge() {}
    Edge(int to, int w, int next) :to(to), w(w), next(next) {}
}graph[MAXN * MAXN];//测试数据里有一张完全图 边数是平方级的(不到平方)
int N, M;//地点数 路数
int al[MAXN], index, dis[MAXN];//adjacency_list 邻接表 用来存放每个起点的最后一个点的位置 和之前略有不同 index 为节点分配下标 distance 最短距离 这里是最大的最大负重
queue<int>q;//queue 辅助队列
bool inq[MAXN];//in_queue 地点在队列中
int fun()
{
    index = 1;//为了把0空出来 从1开始
    for (int p = 0; p < M; p++) {
        int a, b, w;
        scanf("%d%d%d", &a, &b, &w);//input
        graph[index] = Edge(b, w, al[a]);
        al[a] = index++;//这东西和栈一样 先塞进去的点在遍历时最后遇到
        graph[index] = Edge(a, w, al[b]);
        al[b] = index++;
    }
    for (int p = 1; p <= N; p++)
        dis[p] = -INF;
    dis[1] = INF;//下面就是算法主体了
    q.push(1);
    inq[1] = 1;
    while (!q.empty()) {
        int a = q.front();
        q.pop();
        inq[a] = 0;
        for (int p = al[a]; p; p = graph[p].next) {//还是说 由于类似栈 因而第一个点的next是0 0是空的 作为遍历终点正好
            if (dis[graph[p].to] < min(dis[a], graph[p].w)) {
                dis[graph[p].to] = min(dis[a], graph[p].w);
                if (!inq[graph[p].to]) {
                    q.push(graph[p].to);
                    inq[graph[p].to] = 1;
                }
            }
        }
    }
    return dis[N];
}
int main(void)
{
    //freopen("vs_cin.txt", "r", stdin);
    //freopen("vs_cout.txt", "w", stdout);

    int times;
    scanf("%d", &times);//input
    for (int p = 1; p <= times; p++) {
        scanf("%d%d", &N, &M);//input
        printf("Scenario #%d:\n%d\n\n", p, fun());//output
        memset0(al);//很可惜这个没法顺手清零
    }
}

邻接矩阵:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
#define INF 0x3f3f3f3f
#define MAXN 1003
#define memset0(a) memset(a,0,sizeof(a))

int N, M;
int graph[MAXN][MAXN], dis[MAXN];
queue<int>q;
bool inq[MAXN];
int fun()
{
    for (int p = 0; p < M; p++) {
        int a, b, w;
        scanf("%d%d%d", &a, &b, &w);//input
        graph[a][b] = graph[b][a] = w;
    }
    for (int p = 2; p <= N; p++)
        dis[p] = -INF;
    dis[1] = INF;
    q.push(1);
    inq[1] = 1;
    while (!q.empty()) {
        int a = q.front();
        q.pop();
        inq[a] = 0;
        for (int p = 1; p <= N; p++) {
            if (graph[a][p] && dis[p] < min(dis[a], graph[a][p])) {
                dis[p] = min(dis[a], graph[a][p]);
                if (!inq[p]) {
                    q.push(p);
                    inq[p] = 1;
                }
            }
        }
    }
    return dis[N];
}
int main(void)
{
    //freopen("vs_cin.txt", "r", stdin);
    //freopen("vs_cout.txt", "w", stdout);

    int times;
    scanf("%d", &times);//input
    for (int p = 1; p <= times; p++) {
        scanf("%d%d", &N, &M);//input
        printf("Scenario #%d:\n%d\n\n", p, fun());//output
        memset0(graph);
    }
}

动态邻接表:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
#define INF 0x3f3f3f3f
#define MAXN 1003
#define memset0(a) memset(a,0,sizeof(a))

struct Edge
{
    int to, w;
    Edge() {}
    Edge(int to, int w) :to(to), w(w) {}
};
int N, M;
int dis[MAXN];
vector<vector<Edge>>graph;
queue<int>q;
bool inq[MAXN];
int fun()
{
    graph.resize(N + 1);
    for (int p = 0; p < M; p++) {
        int a, b, w;
        scanf("%d%d%d", &a, &b, &w);//input
        graph[a].push_back(Edge(b, w));
        graph[b].push_back(Edge(a, w));
    }
    for (int p = 1; p <= N; p++)
        dis[p] = 0;
    dis[1] = INF;
    q.push(1);
    inq[1] = 1;
    while (!q.empty()) {
        int a = q.front();
        q.pop();
        inq[a] = 0;
        for (int p = 0; p < graph[a].size(); p++) {
            Edge b = graph[a][p];
            if (dis[b.to] < min(dis[a], b.w)) {
                dis[b.to] = min(dis[a], b.w);
                if (!inq[b.to]) {
                    q.push(b.to);
                    inq[b.to] = 1;
                }
            }
        }
    }
    return dis[N];
}
int main(void)
{
    //freopen("vs_cin.txt", "r", stdin);
    //freopen("vs_cout.txt", "w", stdout);

    int times;
    scanf("%d", &times);
    for (int p = 1; p <= times; p++) {
        scanf("%d%d", &N, &M);//input
        printf("Scenario #%d:\n%d\n\n", p, fun());//output
        graph.clear();
    }
}

EOF

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值