评价指标
文章平均质量分 94
LRaby35646
这个作者很懒,什么都没留下…
展开
-
Spearman、Pearson、Euclidean、Cosine、Jaccard,用来衡量不同数据之间的相似性或差异性
排序关系-1到1。原创 2024-10-23 17:05:06 · 1147 阅读 · 0 评论 -
二分类、多分类、多标签分类的评价指标
每个样本只能属于两个类别中的一个每个样本只能属于多个类别中的一个。准确率是正确分类的样本数占总样本数的比例。精确率是模型正确预测的正类样本数占所有预测为正类的样本数的比例。召回率是模型正确预测的正类样本数占所有实际为正类的样本数的比例。F1分数是精确率和召回率的调和平均数。混淆矩阵是一个表格,用于描述模型预测结果的表现。ROC AUC 是 ROC 曲线下的面积,衡量模型的分类性能分类报告汇总了精确率、召回率和 F1 分数等指标。原创 2024-07-29 17:57:20 · 2375 阅读 · 0 评论