神经网络和深度学习

神经网路基础

2.3 logistic回归损失函数

  • Loss (error) function:
    The loss function measures the discrepancy between the prediction (𝑦̂(𝑖)) and the desired output (𝑦(𝑖)).In other words, the loss function computes the error for a single training example.
  • Cost function:
    The cost function is the average of the loss function of the entire training set. We are going to find the
    parameters 𝑤 𝑎𝑛𝑑 𝑏 that minimize the overall cost function.

2.4 梯度下降法

  • 由上所述, logistic回归是一种有监督的机器学习算法, 总目标就是使Cost function最小. 而Cost function是关于𝑤、𝑏的二元函数, 该学习过程即是不断修正𝑤、𝑏的过程:
while condition_x:
    𝑤 = 𝑤 - α*d_𝑤
    𝑏 = 𝑏 - α*d_𝑏
    pass
# 其中dx是Cost function对x的偏微分

2.5 - 2.6 导数

  • 把导数看作函数的斜率(这里有点微积分的基础就会懂,不多记)

2.7 计算图

  • 就是tensorflow种compute graph那一套, Andrew这里介绍这个思想主要是想讲前向、后向传播的过程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值