tensorflow实现循环神经网络

一般的RNN存在长期依赖问题,为了解决这个问题,LSTM被设计出来

关于LSTM可以参考http://www.jianshu.com/p/9dc9f41f0b29

1、这里给出tensorflow使用LSTM的框架

#coding:utf-8

import tensorflow as tf 
from tensorflow.contrib.rnn import core_rnn_cell

lstm = core_rnn_cell.BasicLSTMCell(lstm_hidden_size)#隐藏层

state = lstm.zero_state(batch_size,tf.float32)#将状态初始化为全0数组

loss = 0.0

#为了避免梯度消散,规定一个最大的序列长度,num_step
for i in range(num_steps):
    if i>0:
        tf.get_variable_scope().reuse_variables()#在第一个时刻声明lstm结构中使用的变量,在之后的时刻都需要重复使用之前定义好的变量

    lstm_output,state = lstm(current_input,state)

    final_output = fully_connected(lstm_output)

    loss += calc_loss(final_output,expeted_output)

2、深度LSTM

#coding:utf-8
import tensorflow as tf

lstm = tf.contrib.rnn.core_rnn_cell.BasicLSTMCell(lstm_size)
#lstm = tf.contrib.rnn.BasicLSTMCell(lstm_size)


#深层循环神经网络
#number_of_layers表示有多少层
stacked_lstm = tf.contrib.rnn.MultiRNNCell([lstm]*number_of_layers)

state = stacked_lstm.zero_state(batch_size,tf.float32)

for i in range(len(num_steps)):
    if i >0:
        tf.get_variable_scope().reuse_variables()

    stacked_lstm_output,state = stacked_lstm(current_input,state)

    final_output = fully_connected(stacked_lstm_output)

    loss += calc_loss(final_output,expected_output)

3、加上Dropout

#coding:utf-8
#创建一个带有dropout的深层lstm
import tensorflow as tf 

lstm = tf.contrib.rnn.BasicLSTMCell(lstm_size)

dropput_lstm = tf.contrib.rnn.DropoutWrapper(lstm,output_keep_prob =0.5)

stacked_lstm = tf.contrib.rnn.MultiRNNCell([dropout_lstm]*number_of_layers)

for i in range(num_step):
    if i>0:
        tf.get_variable_scope().reuse_variables()

    output,state = stacked_lstm(current_input,state)
    final_output = final_connected(output)
    loss += calc_loss(final_output,expected_output)

4、简单应用:预测sin函数

#coding:utf-8

import tensorflow as tf
import numpy as np 
import matplotlib as mpl 
mpl.use('Agg')

from matplotlib import pyplot as plt

learn = tf.contrib.learn

HIDDEN_SIZE = 30
NUM_LAYERS = 2

TIMESTEPS = 10
TRAINING_STEPS = 10000

BATCH_SIZE = 32

TRAIN_EXAMPLES = 10000

TESTING_EXAMPLES = 1000

SAMPLE_GAP = 0.01

def generate_data(seq):
    X = []
    y = []


    for i in range(len(seq)-TIMESTEPS-1):
        X.append(seq[i:i+TIMESTEPS])
        y.append(seq[i+TIMESTEPS])

    return np.array(X,dtype=np.float32),np.array(y,dtype=np.float32)

def lstm_model(X,y):
    lstm_cell = tf.contrib.rnn.BasicLSTMCell(HIDDEN_SIZE)
    cell = tf.contrib.rnn.MultiRNNCell([lstm_cell]*NUM_LAYERS)

    x_=tf.unstack(X,axis = 1)#a=tf.unpack([[1,2,3],[1,25,6]],axis=1),
    #[array([1, 1], dtype=int32), array([ 2, 25], dtype=int32), array([3, 6], dtype=int32)]
    ###########################################################

    output,_ = tf.contrib.rnn(cell,x_,dtype=tf.float32)
    output = output[-1]#取最后一个值

    ###########################################################

    prediction,loss = learn.LinearRegressor(output,y)#

    #优化器的新定义方法
    train_op = tf.contrib.layers.optimize_loss(loss,tf.contrib.frameworks.get_global_step(),optimizer = "Adagrad",learning_rate=0.1)

    return prediction ,loss,train_op


regressor = learn.Estimator(model_fn = lstm_model)

test_start = TRAIN_EXAMPLES*SAMPLE_GAP
test_end = (TRAIN_EXAMPLES+TESTING_EXAMPLES)*SAMPLE_GAP

train_X,train_y = generate_data(np.sin(np.linspace(0,test_start,TRAIN_EXAMPLES,dtype=np.float32)))

test_X,test_y = generate_data(np.sin(np.linspace(test_start,test_end,TESTING_EXAMPLES,dtype=np.float32)))

#fit一句话用来训练
regressor.fit(train_X,train_y,batch_size=BATCH_SIZE,steps = TRAINING_STEPS)

prcdicted = [[pred] for pred in regressor.predict(test_X)]

rmse = np.sqrt(((predicted-test_y)**2).mean(axis=0))

print "误差为  ","rmse"

fig = plt.figure()
plot_predicted = plt.plot(predicted,label = "predicted")
plot_test = plt(test_y,label = "real_sin")
plt.legend([plot_predicted,plot_test],["predicted","real_sin"])

fig.savefig("sin.png")

5、实际上在NLP中,循环神经网络应用是比较多的。循环神经网络可以捕获上下文信息,可以进行语言建模

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值