计算A^n幂时,特征值分解

原文:点击打开链接

特征值分解

函数 eig

格式 d = eig(A)         %求矩阵A的特征值d,以向量形式存放d。

d = eig(A,B)       %A、B为方阵,求广义特征值d,以向量形式存放d。

[V,D] = eig(A)      %计算A的特征值对角阵D和特征向量V,使AV=VD成立。

[V,D] = eig(A,'nobalance')   %当矩阵A中有与截断误差数量级相差不远的值时,该指令可能更精确。'nobalance'起误差调节作用。

[V,D] = eig(A,B)    %计算广义特征值向量阵V和广义特征值阵D,满足AV=BVD。

[V,D] = eig(A,B,flag)   % 由flag指定算法计算特征值D和特征向量V,flag的可能值为:'chol' 表示对B使用Cholesky分解算法,这里A为对称Hermitian矩阵,B为正定阵。'qz' 表示使用QZ算法,这里A、B为非对称或非Hermitian矩阵。

说明 一般特征值问题是求解方程: 解的问题。广义特征值问题是求方程: 解的问题。


奇异值分解

函数 svd

格式 s = svd (X)          %返回矩阵X的奇异值向量

[U,S,V] = svd (X)   %返回一个与X同大小的对角矩阵S,两个酉矩阵U和V,且满足= U*S*V'。若A为m×n阵,则U为m×m阵,V为n×n阵。奇异值在S的对角线上,非负且按降序排列。

[U,S,V] = svd (X,0)   %得到一个“有效大小”的分解,只计算出矩阵U的前n列,矩阵S的大小为n×n。

例1-73

>> A=[1 2;3 4;5 6;7 8];

>> [U,S,V]=svd(A)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值