Hbase的热点问题以及rowkey的设计原则

什么是数据热点?

有了分区就会有数据热点问题。分区之后大量数据写入到某些集中的region中,导致这些region所在的regionServer节点承接了大量的任务,而有的节点则没有数据很闲,这就造成了数据热点。

如何解决数据热点问题?

1.加盐处理,在rowKey前面加随机数,可以使数据分布更加的均匀

例子:insert into test select concat(rand(),'zk') from test1

2.hash处理,计算rowKey的hash值,可以让数据离散,可以让关联性较强的数据放在一起,有利于后期的业务查询。

例子:insert into test select hash('zk') from test1

3.反转字符(reverse),可以反转手机号码或者身份证号码等等,基本可以保证数据的均匀分布,但是会把关联性较强的数据全部打散分在不同的region,不利于后期业务的查询,不推荐使用。

rowkey的设计原则

rowKey的设计主要是让数据均匀的分布在每个region上面,一定程度上防止数据的热点

三大原则:

唯一原则

排序原则

散列原则

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值