这一应用主要是利用粒子群算法的全局优化能力和随机搜索特性,对电池的等效电路模型参数进行离线辨识。通过设定目标函数,并对其进行寻优,可以找到使电池模型输出与实际测量值最为接近的参数值。这种方法具有原理简单、参数少、实现容易等优点,并且已经在锂离子电池等电池系统的参数辨识中得到了广泛应用。
粒子群算法基本原理详见:粒子群优化算法及应用-CSDN博客
目录
1、电池模型建立
1.1 二阶RC模型
目前广泛采纳的等效电路模型涵盖了Thevenin模型、PNGV模型以及多阶RC模型。研究表明,二阶RC网络模型在锂电池多种特性的模拟上表现出较高的精确度,并且能够有效地控制计算复杂度,使之保持在适宜的范围内。
图1 二阶RC模型
该模型结构包含一个电压源Uocv、一个欧姆内阻R0以及两个并联的RC网络。电压源Uocv代表电池的开路电压,它是关于荷电状态(SOC)的非线性函数,此函数可通过拟合方法获得。欧姆内阻R0体现了电极、电解液及隔膜对离子传输的阻碍。而R1 C1与R2 C2两组元件则分别描述了电池的两个极化效应。在此模型中,Ud代表锂电池的端电压,I代表流经电池的总电流。此外,U1和U2分别代表两个并联RC网络中电容的两端电压。
1.2 状态方程建立
离散化后
联立上公式可得
2、 电池模型辨识
2.1电池放电数据
锂离子测试放电工况:(1)选择容量为3000mAh的18650电池,对电池进行1C(3A)恒流充电直至4.5V使电池的SOC为100%后静置2个小时;(2)以1C(3A)恒流放出10%SOC的电量,然后静置2小时;(3)循环(2),直至达到放电截止电压。 得到放电曲线图如下:
图2 放电曲线图
2.2 参数R0的求解
图3 电压局部放大
欧姆电阻R0是让电池端电压在通电和断电时电压骤变的主要原因。欧姆电阻R0可以用公式直接计算出来,具体公式如下:
2.3 适应度函数的建立
所以待辨识量分别为:[]
变量假设:
目标函数:
其中表示真实电压值,表示模拟电压值。
取值范围:
3 辨识结果
以SOC在90%~80%这一段为例:
分别在SOC为100%~90% 90%~80% …30%~20% 20%~10%这十段进行辨识得到如下结果:
SOC初值 | R0 | R1 | C1 | R2 | C2 |
1 | 0.022034802 | 0.011930178 | 1648.827511 | 0.0001 | 26800.2111 |
0.9 | 0.019067938 | 0.017814006 | 2067.056745 | 0.0001 | 25237.3772 |
0.8 | 0.018434562 | 0.016547427 | 496.6552263 | 0.018193717 | 19137.38592 |
0.7 | 0.018101207 | 0.014575586 | 299.6297523 | 0.016281963 | 67732.88892 |
0.6 | 0.018067871 | 0.016154616 | 1939.862556 | 0.0001 | 39859.65891 |
0.5 | 0.018101207 | 0.015066913 | 2040.813885 | 0.018953871 | 85567.55239 |
0.4 | 0.017933333 | 0.017643095 | 1675.343725 | 0.0001 | 99586.48222 |
0.3 | 0.017801187 | 0.021368654 | 1168.10599 | 0.025809413 | 69207.09768 |
0.2 | 0.018067871 | 0.026402727 | 242.9941401 | 0.018055158 | 24493.54703 |
0.1 | 0.019401293 | 0.02101448 | 3081.03392 | 0.1 | 15201.50666 |
最后将辨识结果全部带入模型
电压最大相对误差小于2.5%,满足要求。说明粒子群算法辨识二阶RC模型是可行的!!!
本人喜欢研究优化算法,可以加好友交流交流,可以私信我要代码或者更新你所想看到的内容!