座标转换:TWD67<->TWD97

國立成功大學水工試驗所
 
大地坐標轉換程式(出处)


請先選擇欲轉換的原始坐標格式
 

 

請輸入欲轉換的原始坐標值 (輸入格式:121:10:30.301,23:42:10.3 or147000.234,2550000.222)
 

TWD67經緯度坐標值  : 120:08:21.11400, 23:03:10.11500 (120.139198333333,23.0528097222222)
TWD67二度分帶坐標值 : 161788.985, 2550399.220
TWD97(WGS84)經緯度坐標值: 120:08:50.19236, 23:03:03.79617 (120.147275655002,23.0510544929999)
TWD97二度分帶坐標值 : 162615.938, 2550191.180

UrMap地圖定位    Google地圖定位

====================我是分隔線======================

TWD67<->TWD97 二度分帶二維坐標轉換公式:
A= 0.00001549
B= 0.000006521
E67 = E97 - 807.8 - A * E97 - B * N97
N67 = N97 + 248.6 - A * N97 - B * E97
E97 = E67 + 807.8 + A * E67 + B * N67
N97 = N67 - 248.6 + A * N67 + B * E67
PS.僅適用於台灣本島,最大誤差約二公尺,精密測量不適用!

====================我是分隔線======================

P.S. 如需執行『批次轉換』,請連結至 中央研究院 - GIS應用支援工具集 下載編號10的 WGS84_TM2 程式


TWD67 與 TWD97 座標概略換算公式

TWD67 橫座標 = TWD97 橫座標 - 828 公尺
TWD67 縱座標 = TWD97 縱座標 + 207 公尺


内容概要:本文档《opencv高频面试题.docx》涵盖了OpenCV的基础概念、图像处理操作、特征提取与匹配、目标检测与机器学习、实际编程题、性能优化以及进阶问题。首先介绍了OpenCV作为开源计算机视觉库,支持图像/视频处理、目标检测、机器学习等领域,应用于安防、自动驾驶、医学影像、AR/VR等方面。接着详细讲述了图像的存储格式(如Mat类)、通道的概念及其转换方法。在图像处理部分,讲解了图像灰度化、二值化、边缘检测等技术。特征提取方面,对比了Harris和Shi-Tomasi角点检测算法,以及SIFT、SURF、ORB的特征提取原理和优缺点。目标检测部分介绍了Haar级联检测原理,并阐述了如何调用深度学习模型进行目标检测。文档还提供了几个实际编程题示例,如读取并显示图像、图像旋转、绘制矩形框并保存等。最后,探讨了性能优化的方法,如使用cv2.UMat(GPU加速)、减少循环等,以及相机标定、光流等进阶问题。 适合人群:对计算机视觉有一定兴趣,具备一定编程基础的学习者或从业者。 使用场景及目标:①帮助学习者掌握OpenCV的基本概念和技术;②为面试准备提供参考;③为实际项目开发提供技术指导。 阅读建议:由于内容涵盖广泛,建议读者根据自身需求有选择地深入学习相关章节,并结合实际编程练习加深理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值