1、背景信息
近期前线人员反馈,在使用问答系统处理PPT文件时回答效果不佳。经查发现,用户上传的PPT内容多为图文混排形式,包含大量图像和统计图表。用户提问主要聚焦于图表数据及其相互关系。
我这里随意在网上找了一个PPT做尝试,这个PPT有一张图如下所示:
提问:“2017年大数据开发人数比2016年增加了还是减少了,具体增加或减少了多少人?”
系统返回:
根据提供的资源数据,2017年大数据开发职位的招聘人数大幅增加。具体来说,2016年大数据开发的招聘人数为5,667人,而2017年则增加到41,831人。因此,2017年大数据开发职位比2016年增加了36,164人 (41,831 - 5,667 = 36,164)。
从图片我们可以看出明显存在回答错误的问题。
2、问题分析
目前使用的LangChain UnstructuredPowerPointLoader在解析PPT时存在以下不足:
- 对图文混排内容处理能力弱
- 图表数据提取不准确
- 语义信息丢失严重
PPT文档特性
- 非结构化布局:没有固定格式,图文表混排
- 视觉化表达:大量使用图表而非纯文本传递信息
- 天然分块:每页幻灯片构成独立的知识单元
传统文本提取+RAG的处理方式会丢失视觉元素中的语义信息,这正是当前系统效果不佳的主因。
3、 解决方案
随着现在多模态大模型的效果越来越强,我们就可以使用LVM来解决这类问题。既然仅仅参考从图片识别出的文本回答不是很准确,那么我们可不可以考虑使用文本+原始图片的方式送给LVM来回答呢?
首先借助LVM对PPT进行解析,可以解析出每页幻灯片对应的文本和图片,我们把文本进行embedding作为召回,在检索的时候把检索到的文本和关联的图片一起送给大模型用于生成。
4、 LlamaParse
为了方便演示,这里对PPT进行解析成文本和图片我使用的工具是LlamaParse。免费用户每天有1k页的额度,够我们日常测试使用。
首先注册账号并登录https://cloud.llamaindex.ai,然后打开LVM功能
接着申请项目对应的API key 就可以用来测试了,我们可以通过对应的api 来获取每页幻灯片的文本内容并下载每页图片到本地。
LlamaParse是LlamaCloud的一部分,是一个GenAI原生文档解析器,可以为任何下游LLM用例(RAG、代理)解析复杂的文档数据。
os.environ["LLAMA_CLOUD_API_KEY"] = "xxx"
parser = LlamaParse(
result_type="json",
use_vendor_multimodal_model=True,
vendor_multimodal_model_name="gemini-2.0-flash-001",
language="ch_sim"
)
md_result = parser.get_json_result(file_path)
doc_id = md_result[0]["job_id"]
pages = md_result[0]["pages"]
# 下载图片到本地
parser.get_images(md_result, download_path="data_images")
5、如何索引
- 原文档的每一页PPT转为图片,并借助多模态模型解析成每一页的Markdown文本
- 将每一页的Markdown文本块作为一个Chunk,并根据页码与页面图片关联起来(存储base64编码/云路径/本地路径)。这样,在检索时可以根据文本块找到对应的图片
- 嵌入这些文本Chunks,并将它们存储在向量库中
dataset = []
docs = []
base64_map = {}
for page in pages:
md = page["md"]
page_number = page["page"]
# 查找并上传对应页码的图片
local_image_path = find_image_by_page(
"data_images", doc_id, page_number)
with open(local_image_path, "rb") as image_file:
image_base64 = base64.b64encode(image_file.read()).decode('utf-8')
# 添加到dataset
dataset.append({
'content': md,
'image_base64': image_base64,
'page_number': page_number
})
docs.append(
Document(
page_content=md,
metadata={
"page_number": page_number,
})
)
base64_map[page_number] = image_base64
vectorstore = Milvus.from_documents(
documents=docs,
embedding=embeddings,
connection_args={"host": "127.0.0.1", "port": "19530"},
drop_old=True, # Drop the old Milvus collection if it exists
collection_name="collection_ppt",
)
6、检索和生成
- 从向量库检索关联的块,也就是前面对应到PPT页面的生成文本
- 根据这些块中的元数据,找到对应的页面截图base64
- 将文本块组装成Prompt,与找到的图片的base64一起输入多模态模型,等待响应
dat = vectorstore.similarity_search(query=question, k=5)
image_base64_list = []
chunk = []
for doc in dat:
page_number = doc.metadata["page_number"]
print(page_number)
image_base64 = base64_map.get(page_number)
if image_base64:
image_base64_list.append(image_base64)
chunk.append(doc.page_content)
openai_api_key = os.environ["OPENAI_API_KEY"] # 替换为你的 OpenAI API Key
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}"
}
# 构建 messages 内容
messages_content = [
{"type": "text", "text": """The following is the Markdown text and image information parsed in the slide. Markdown text has attempted to convert the relevant charts into tables. Give priority to using picture information to answer questions. Use Markdown text information only when the image cannot be understood.
Here is the context:
---------
{context}
---------
Question: {question}
""".format(context="\n".join(chunk), question=question)}
]
if image_base64_list:
# 添加所有检索到的图片
for img_base64 in image_base64_list:
messages_content.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{img_base64}"
}
})
payload = {
"model": "gpt-4.1",
"messages": [
{
"role": "user",
"content": messages_content
}
],
"temperature": 0.1,
"max_tokens": 1000# 根据需要调整
}
# 发送请求到 OpenAI API
try:
response = requests.post(
"https://api.openai-proxy.com/v1/chat/completions",
headers=headers,
json=payload
)
response.raise_for_status() # 检查请求是否成功
# 解析并打印结果
result = response.json()
print("OpenAI 分析结果:")
print(result["choices"][0]["message"]["content"])
except requests.exceptions.RequestException as e:
print(f"请求 OpenAI API 失败: {e}")
if hasattr(e, 'response') and e.response:
print(f"错误详情: {e.response.text}")
当我们执行query:
2017年大数据开发人数比2016年增加了还是减少了, 具体增加或者减少了多少人?
返回的结果就是正确的了:
7、 总结和优化
在测试验证过程中,我们发现当前方案仍存在一些可优化的空间,主要涉及准确性、性能和扩展性三个方面:
- 解析准确性问题
-
多维度数据图表(如组合柱状图+折线图)
-
颜色相近的信息元素
-
非标准图表类型
-
视觉模型对复杂图表的解析仍存在约5-10%的偏差率
-
特别在以下场景容易出错:
- 性能与成本考量
- 多模态模型响应时间较纯文本LLM增加40-60%
- Token消耗量约为普通文本处理的2-3倍
- 高并发场景下API调用成本显著增加
- 检索效率挑战
- 检索准确率下降15-20%
- 模糊查询的召回率问题尤为突出
- 相似页面间容易产生干扰
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。