让 AI 看懂 PPT 图表!RAG 系统从 60 分到 95 分的进化历程,LlamaParse 与多模态实战深度解析

1、背景信息

近期前线人员反馈,在使用问答系统处理PPT文件时回答效果不佳。经查发现,用户上传的PPT内容多为图文混排形式,包含大量图像和统计图表。用户提问主要聚焦于图表数据及其相互关系。

我这里随意在网上找了一个PPT做尝试,这个PPT有一张图如下所示:

img

提问:“2017年大数据开发人数比2016年增加了还是减少了,具体增加或减少了多少人?”

系统返回:

根据提供的资源数据,2017年大数据开发职位的招聘人数大幅增加。具体来说,2016年大数据开发的招聘人数为5,667人,而2017年则增加到41,831人。因此,2017年大数据开发职位比2016年增加了36,164人 (41,831 - 5,667 = 36,164)。

从图片我们可以看出明显存在回答错误的问题。

2、问题分析

目前使用的LangChain UnstructuredPowerPointLoader在解析PPT时存在以下不足:

  1. 对图文混排内容处理能力弱
  2. 图表数据提取不准确
  3. 语义信息丢失严重
PPT文档特性
  • 非结构化布局:没有固定格式,图文表混排
  • 视觉化表达:大量使用图表而非纯文本传递信息
  • 天然分块:每页幻灯片构成独立的知识单元

传统文本提取+RAG的处理方式会丢失视觉元素中的语义信息,这正是当前系统效果不佳的主因。

3、 解决方案

随着现在多模态大模型的效果越来越强,我们就可以使用LVM来解决这类问题。既然仅仅参考从图片识别出的文本回答不是很准确,那么我们可不可以考虑使用文本+原始图片的方式送给LVM来回答呢?

首先借助LVM对PPT进行解析,可以解析出每页幻灯片对应的文本和图片,我们把文本进行embedding作为召回,在检索的时候把检索到的文本和关联的图片一起送给大模型用于生成。

img

4、 LlamaParse

为了方便演示,这里对PPT进行解析成文本和图片我使用的工具是LlamaParse。免费用户每天有1k页的额度,够我们日常测试使用。

首先注册账号并登录https://cloud.llamaindex.ai,然后打开LVM功能

img

接着申请项目对应的API key 就可以用来测试了,我们可以通过对应的api 来获取每页幻灯片的文本内容并下载每页图片到本地。

LlamaParse是LlamaCloud的一部分,是一个GenAI原生文档解析器,可以为任何下游LLM用例(RAG、代理)解析复杂的文档数据。

os.environ["LLAMA_CLOUD_API_KEY"] = "xxx"

parser = LlamaParse(
        result_type="json",
        use_vendor_multimodal_model=True,
        vendor_multimodal_model_name="gemini-2.0-flash-001",
        language="ch_sim"
    )
md_result = parser.get_json_result(file_path)
doc_id = md_result[0]["job_id"]
pages = md_result[0]["pages"]
# 下载图片到本地
parser.get_images(md_result, download_path="data_images")

5、如何索引

  • 原文档的每一页PPT转为图片,并借助多模态模型解析成每一页的Markdown文本
  • 将每一页的Markdown文本块作为一个Chunk,并根据页码与页面图片关联起来(存储base64编码/云路径/本地路径)。这样,在检索时可以根据文本块找到对应的图片
  • 嵌入这些文本Chunks,并将它们存储在向量库中
dataset = []
docs = []
base64_map = {}
for page in pages:
    md = page["md"]
    page_number = page["page"]

    # 查找并上传对应页码的图片
    local_image_path = find_image_by_page(
        "data_images", doc_id, page_number)
    with open(local_image_path, "rb") as image_file:
        image_base64 = base64.b64encode(image_file.read()).decode('utf-8')

    # 添加到dataset
    dataset.append({
        'content': md,
        'image_base64': image_base64,
        'page_number': page_number
    })
    docs.append(
        Document(
            page_content=md,
            metadata={
                "page_number": page_number,
            })
    )
    base64_map[page_number] = image_base64
    
vectorstore = Milvus.from_documents(
    documents=docs,
    embedding=embeddings,
    connection_args={"host": "127.0.0.1", "port": "19530"},
    drop_old=True,  # Drop the old Milvus collection if it exists
    collection_name="collection_ppt",
)

6、检索和生成

  • 从向量库检索关联的块,也就是前面对应到PPT页面的生成文本
  • 根据这些块中的元数据,找到对应的页面截图base64
  • 将文本块组装成Prompt,与找到的图片的base64一起输入多模态模型,等待响应
dat = vectorstore.similarity_search(query=question, k=5)

image_base64_list = []
chunk = []
for doc in dat:
    page_number = doc.metadata["page_number"]
    print(page_number)
    image_base64 = base64_map.get(page_number)
    if image_base64:
        image_base64_list.append(image_base64)
        chunk.append(doc.page_content)
        
openai_api_key = os.environ["OPENAI_API_KEY"]  # 替换为你的 OpenAI API Key
headers = {
    "Content-Type": "application/json",
    "Authorization": f"Bearer {openai_api_key}"
}

# 构建 messages 内容
messages_content = [
    {"type": "text", "text": """The following is the Markdown text and image information parsed in the slide. Markdown text has attempted to convert the relevant charts into tables. Give priority to using picture information to answer questions. Use Markdown text information only when the image cannot be understood.
 
Here is the context:
---------
{context}
---------

Question: {question}
""".format(context="\n".join(chunk), question=question)}
]

if image_base64_list:
    # 添加所有检索到的图片
    for img_base64 in image_base64_list:
        messages_content.append({
            "type": "image_url",
            "image_url": {
                "url": f"data:image/jpeg;base64,{img_base64}"
            }
        })

payload = {
    "model": "gpt-4.1",
    "messages": [
        {
            "role": "user",
            "content": messages_content
        }
    ],
    "temperature": 0.1,
    "max_tokens": 1000# 根据需要调整
}

# 发送请求到 OpenAI API
try:
    response = requests.post(
        "https://api.openai-proxy.com/v1/chat/completions",
        headers=headers,
        json=payload
    )
    response.raise_for_status()  # 检查请求是否成功

    # 解析并打印结果
    result = response.json()
    print("OpenAI 分析结果:")
    print(result["choices"][0]["message"]["content"])

except requests.exceptions.RequestException as e:
    print(f"请求 OpenAI API 失败: {e}")
    if hasattr(e, 'response') and e.response:
        print(f"错误详情: {e.response.text}")

当我们执行query:

2017年大数据开发人数比2016年增加了还是减少了, 具体增加或者减少了多少人?

返回的结果就是正确的了:

img

7、 总结和优化

在测试验证过程中,我们发现当前方案仍存在一些可优化的空间,主要涉及准确性、性能和扩展性三个方面:

  1. 解析准确性问题
  • 多维度数据图表(如组合柱状图+折线图)

  • 颜色相近的信息元素

  • 非标准图表类型

  • 视觉模型对复杂图表的解析仍存在约5-10%的偏差率

  • 特别在以下场景容易出错:

  1. 性能与成本考量
  • 多模态模型响应时间较纯文本LLM增加40-60%
  • Token消耗量约为普通文本处理的2-3倍
  • 高并发场景下API调用成本显著增加
  1. 检索效率挑战
  • 检索准确率下降15-20%
  • 模糊查询的召回率问题尤为突出
  • 相似页面间容易产生干扰

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

<think>好的,用户之前让我推荐适合个人用户的本地AI知识库工具,现在他进一步询问,要求文档处理能力强,支持类型丰富,没有限制的工具。我需要仔细析他的需求。 首先,用户提到“文档处理强”,可能意味着工具需要支持多种文件格式,处理大量文档,或者具备高效的检索和析能力。之前的回答中,我提到了Ollama-WebUI、AnythingLLM、GPT4All等工具,其中有些可能已经符合部需求,但用户现在需要更强大的处理能力。 接下来,“类型丰富”可能指支持不同类型的文件,比如PDF、Word、Excel、图片、视频、网页等,甚至可能有更多格式。用户可能希望工具不仅能处理常见文档,还能处理各种媒体文件,比如YouTube视频转录,或者OCR识别图片中的文字。 “无限制”可能意味着没有文件大小、数量或格式的限制,或者是指开源、可自定义性强,用户可以根据需要扩展功能。也可能指隐私方面没有数据上传的限制,完全本地处理。 回顾之前的推荐,AnythingLLM支持文档、网页、YouTube视频转录,还有OCR功能,可能符合类型丰富的要求。但用户可能需要更详细的信息,或者更强大的工具。PrivateGPT和Ollama组合也是一个选项,但需要确认是否支持多种类型。 另外,用户可能希望工具能够处理复杂的文档结构,比如表格、图表,或者有版本控制、协作功能。但根据之前的上下文,用户是个人使用,可能更关注单机处理能力,而不是协作。 可能需要推荐更全面的工具,比如AnythingLLM,或者结合多个工具的组合,比如Ollama-WebUI处理文档,加上其他工具处理多媒体。此外,是否需要考虑开源项目,允许用户自行扩展支持的文件类型? 还要注意用户的技术背景,之前的推荐为桌面端、轻量级网页、开发友好型等。用户现在可能更倾向于无需复杂配置,但功能强大的工具,或者他们愿意进行一定程度的自定义设置。 可能还需要补充一些新工具,比如Textract,但需要确认是否本地运行。或者推荐支持插件扩展的工具,如MyGPT,但需要看其文档处理能力是否足够。 另外,是否要强调OCR功能、多语言支持、批量处理能力?这些都可能属于文档处理强的范畴。此外,检索增强生成(RAG)的能力也很重要,能够从大量文档中快速提取信息。 总结下来,需要推荐支持广泛文件格式、具备强大解析能力、可扩展且无使用限制的工具。可能需要点介绍几个工具,强调各自的文档处理优势,比如AnythingLLM的多模态支持,PrivateGPT的向量库生成,Unstructured的开源解析库等。 还要注意用户可能需要处理敏感数据,所以隐私保护仍然是重点,确保所有处理在本地完成。同时,是否有跨平台支持,比如Windows、Mac、Linux,或者移动端? 最后,是否需要提供部署建议,比如使用Docker简化安装,或者推荐预编译的桌面应用,避免用户折腾环境配置。同时,给出典型的使用场景,帮助用户选择最合适的工具。</think>以下是针对**文档处理能力极强、支持丰富文件类型且无严格限制**的本地AI工具推荐,重点关注多格式解析、批量处理和自定义扩展能力: --- ### **一、全格式通杀:多模态文档处理** #### 1. **AnythingLLM** - **核心优势** - **格式无限制**:直接吞入PDF/Word/PPT/Excel/Markdown/HTML/EPUB/图片(OCR识别)/YouTube视频(自动转录) - **工业级解析**:内置Unstructured开源解析引擎,支持表格提取、代码块保留、跨页文档连续处理 - **混合知识库**:允许同时加载本地文件+网页书签+Notion数据库,自动建立关联关系 - **隐私强化** 所有文件预处理在本地完成,支持用AES-256加密整个工作区 - **场景案例** 律师整理案件材料(扫描件+录音转录+判决文书) → 一键生成案情时间线 - [官网](https://useanything.com/) #### 2. **Unstructured**(开源解析库) - **开发者神器** - 提供API和Python库,可将200+文件格式(包括邮件.pst、CAD图纸)转为结构化数据 - 支持自定义解析规则,例如从扫描发票中提取金额/日期等字段 - **典型组合** Unstructured(格式转换) + Ollama(本地大模型) → 构建自动化文档流水线 - [GitHub](https://github.com/Unstructured-IO/unstructured) --- ### **二、海量文档管理:企业级检索系统** #### 1. **PrivateGPT Pro** - **核弹级功能** - **百GB级处理**:实测单机可索引50GB+文档(百万页级别),检索响应<1秒 - **智能块**:自动识别合同/论文等专业文档结构,避免段落截断 - **版本控制**:记录文件修改历史,支持"对比两个版本的财报差异"类指令 - **部署方案** 最低配置:16GB内存+RTX3060显卡,推荐用Docker部署 - [官网](https://privategpt.dev/) #### 2. **Paperless-ngx**(开源文档管理系统) - **归档革命** - 自动类:上传文件后AI自动打标签(如"2024年水电费账单") - 光学字符识别:支持86种语言手写体识别,实测连医生处方潦草字迹都能解析 - 工作流引擎:可设置规则(如自动归档"带签名的PDF合同"到指定目录) - **数据主权** 完全自托管,支持Nextcloud等私有云集成 - [GitHub](https://github.com/paperless-ngx/paperless-ngx) --- ### **三、无限制自定义方案** #### 1. **LlamaIndex + 本地模型** - **开发者终极武器** - 构建自己的文档处理框架:自由组合文本/图像/音视频处理模块 - 支持编写插件:比如为生物医学论文定制化学式解析器 - 连接真实数据库:直接对接MySQL/Excel进行数据析 - **学习曲线** 需Python基础,但官方提供[现成模板](https://docs.llamaindex.ai/en/stable/examples/) - [官网](https://www.llamaindex.ai/) #### 2. **LocalAI + 自定义加载器** - **无限格式扩展** 通过添加[自定义加载器](https://localai.io/features/loader-development/),可支持: - **3D模型**:提取.stl/.obj文件元数据 - **地理数据**:解析GIS地图中的坐标信息 - **冷门格式**:工业领域的.prt/.asm工程图纸 - **典型用例** 建筑师析AutoCAD图纸 → 自动生成材料清单 --- ### **四、硬件优化建议** #### 1. **低配设备方案** - 使用量化模型(如DeepSeek-MoE-16b-4bit) - 外接SSD建立文档缓存区 - 禁用GPU加速,纯CPU运行(速度下降但兼容性提升) #### 2. **高性能配置** - 双显卡交火:RTX 4090*2 实现并行文档处理 - 内存盘加速:将频繁访问的文档库加载到RAM Disk - 布式部署:多台机器别处理不同文档类型 --- ### **操作技巧:突破常规限制** 1. **格式转换黑科技** 用`pandoc`命令行工具将冷门格式转为Markdown: ```bash pandoc -s blueprint.dwg -t markdown -o output.md ``` 2. **暴力破解损坏文件** 在AnythingLLM中开启`--force-parse`模式,即使损坏的PDF也能提取部内容 3. **超长文本处理** 使用滑动窗口技术,用如下Python代码段处理百万字小说: ```python from llama_index.core import SimpleDirectoryReader reader = SimpleDirectoryReader(input_files=["huge_novel.txt"], window_size=10000) ``` --- ### **总结:文档处理最强组合** - **普通人首选**:AnythingLLM(全格式支持)+ GPT4All(离线问答) - **技术极客**:Unstructured(格式转换) + LlamaIndex(自定义管道) + DeepSeek模型 - **企业级需求**:Paperless-ngx(文档管理) + PrivateGPT Pro(智能检索) 💡 终极建议:先用AnythingLLM验证需求,再逐步迁移到自定义方案,避免过度工程化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值