什么是大模型?一图全面了解大模型,附国内外知名大模型及 240 余家大模型清单!

在当今数字化时代,大模型技术正以前所未有的速度改变着我们的生活和工作方式。从智能语音助手到图像识别系统,从个性化推荐引擎到自动化翻译工具,大模型的应用无处不在,其强大的功能和广泛的适用性让人们对未来充满了无限遐想。那么,究竟什么是大模型?它又有哪些独特的特点和分类呢?本文将为你一一揭晓,并附上国内外知名大模型及 240 余家大模型清单,助你全面了解大模型的世界。

一、什么是大模型

大模型,全称大规模预训练模型(Large-Scale Pretrained Model),是指基于海量数据,运用深度学习算法,在大规模计算资源支持下训练出来的具有庞大参数规模的人工智能模型。这些模型通过对大量数据的学习,能够捕捉到数据中的复杂模式和特征,从而具备强大的泛化能力和知识储备,能够在多种任务和领域中表现出色。

请添加图片描述

简单来说,大模型就像是一个超级智能大脑,它通过 “阅读” 和 “学习” 海量的文本、图像、音频等数据,积累了丰富的知识和经验,能够理解人类的语言和意图,并根据这些理解生成相应的回答或完成各种任务。例如,在自然语言处理领域,大模型可以理解文本的含义,进行文本生成、翻译、问答等任务;在计算机视觉领域,大模型可以识别图像中的物体、场景,进行图像生成、目标检测等任务。

二、大模型的特点

1. 庞大的参数规模

大模型最显著的特点之一就是其庞大的参数规模。参数是模型在训练过程中学习到的权重和偏差,它们决定了模型的行为和表现。一般来说,模型的参数规模越大,它能够学习到的知识和模式就越复杂,其表达能力也就越强。例如,GPT-3 的参数规模达到了 1750 亿,而 GPT-4 的参数规模更是惊人,据推测可能超过万亿级别。这些庞大的参数使得模型能够捕捉到数据中的细微特征和长距离依赖关系,从而在各种任务中表现出色。

2. 海量的数据训练

为了学习到丰富的知识和模式,大模型需要在海量的数据上进行训练。这些数据来源广泛,包括互联网上的文本、图像、音频、视频等各种类型的数据。通过对这些海量数据的学习,大模型能够掌握不同领域的知识和语言表达方式,从而具备强大的泛化能力,能够适应各种不同的任务和场景。例如,在自然语言处理领域,大模型通常会在数十亿甚至数万亿字的文本数据上进行训练,这些数据涵盖了新闻、小说、论文、博客等各种类型的文本,使得模型能够学习到丰富的语言知识和语义理解能力。

3. 强大的泛化能力

由于在海量数据上进行了训练,大模型具有强大的泛化能力,即能够在未见过的数据和任务上表现出色。这意味着大模型不仅仅是对训练数据的简单记忆,而是真正理解了数据中的模式和规律,能够将这些知识应用到新的情境中。例如,一个经过大量文本训练的语言大模型,不仅能够准确回答常见的问题,还能够理解一些复杂的、模糊的语言表达,并给出合理的回答。这种强大的泛化能力使得大模型在实际应用中具有极高的价值,能够为用户提供更加智能、高效的服务。

4. 多任务处理能力

大模型通常具备多任务处理能力,能够在不同的任务之间进行切换和适应。这是因为大模型在训练过程中学习到的是通用的知识和模式,这些知识和模式可以应用到多种不同的任务中。例如,一个语言大模型既可以用于文本生成,生成新闻报道、故事、诗歌等各种类型的文本;也可以用于文本分类,对文章的主题、情感倾向等进行判断;还可以用于机器翻译,实现不同语言之间的自动翻译。这种多任务处理能力使得大模型成为了一种通用的人工智能工具,能够满足不同用户在不同场景下的需求。

5. 持续学习和进化能力

随着数据的不断积累和算法的不断优化,大模型具有持续学习和进化的能力。通过不断地在新的数据上进行训练和微调,大模型可以不断提升自己的性能和表现,适应不断变化的环境和需求。例如,OpenAI 会定期对 GPT 系列模型进行更新和改进,增加新的功能和提升模型的准确性。这种持续学习和进化能力使得大模型始终保持在技术的前沿,为用户提供更加优质的服务。

三、大模型的分类

大模型可以根据不同的标准进行分类,以下是几种常见的分类方式:

1. 按模型架构分类

  • Transformer 系:基于自注意力机制,擅长处理长序列数据。例如,纯 Decoder 的 GPT 系列(用于文本生成)、PaLM(用于对话);纯 Encoder 的 BERT(用于文本理解)、RoBERTa;Encoder - Decoder 的 T5(用于文本转换)、BART(用于摘要生成)等。

  • 混合架构(Transformer + 其他):融合不同结构以增强能力。如 Transformer + MoE 的 Switch Transformer(动态激活专家模块)、疑似使用该结构的 GPT - 4;Transformer + 图神经网络的 Graphormer(用于分子结构预测)等。

2. 按任务类型分类

  • 生成式模型(Generative):主要任务是生成文本、代码、图像等内容。代表模型有 GPT - 4、Claude 3、Stable Diffusion(文生图)等。典型应用场景包括写文章、编程辅助、创意设计等。

  • 判别式模型(Discriminative):主要用于分类、排序、判断等任务。例如 BERT(用于文本分类)、CLIP(用于图文匹配)等。常见应用场景有情感分析、垃圾邮件过滤等。

  • 多任务模型:能够一个模型处理多种任务。比如 T5(文本到文本统一框架)、FLAN - T5(指令微调版)等。

3. 按参数量级分类

  • 轻量级:参数量范围在 1 亿 - 10 亿,如 DistilBERT、TinyLLAMA 等,硬件需求为单卡 GPU(如 RTX 3090)。

  • 中量级:参数量在 10 亿 - 100 亿之间,像 LLaMA - 7B、ChatGLM - 6B 等,通常需要多卡 GPU(如 A100×4)。

  • 重量级:参数量从 100 亿到千亿,例如 GPT - 3(1750 亿)、PaLM 等,需要 GPU 集群(如 TPU Pod)。

  • 超重量级:参数量在千亿以上,如 GPT - 4、Claude 3 等,依赖超算中心级设施。

4. 按模态(数据类型)分类

单模态模型

  • 文本模型:如 GPT - 4(纯文本)、Jurassic - 1。

  • 图像模型:DALL・E 3(文生图)、ViT(图像分类)。

  • 语音模型:Whisper(语音转文本)、VALL - E(语音合成)。

多模态模型:能够同时处理文本、图像、语音等多种数据类型。例如通用多模态的 GPT - 4o(支持图文音交互)、Gemini 1.5 Pro;垂直领域的 Flamingo(图文问答)、Codex(代码生成)等。

5. 按开源性质分类

  • 开源模型:代码和权重公开,可自由修改。例如 Meta 系的 LLaMA 3、SAM(图像分割);中国系的 ChatGLM - 6B、Qwen - 72B 等。其优势在于适合二次开发,研究过程透明。

  • 闭源模型:仅提供 API 服务,技术细节保密。像 GPT - 4、Claude 3、Gemini Ultra 等。这类模型的优势是企业级稳定性,无需用户进行部署维护。

6. 按应用领域分类

  • 通用大模型:旨在解决广泛的问题,具备问答、写作、推理等多种能力。代表模型有 GPT - 4、Claude 3、PaLM 2 等。

  • 垂直领域模型:专注于特定领域,在该领域内效果更优。例如医疗领域的 Med - PaLM(谷歌医疗问答);法律领域的 LexGPT(法律文书生成);编程领域的 CodeLlama(代码生成)、GitHub Copilot 等。

7. 按技术路线分类

  • 密集模型(Dense Model):所有参数在每次计算中都参与运算。如 GPT - 3、BERT 等。其优势是简单稳定,适合通用任务。

  • 稀疏模型(MoE,Mixture of Experts):每次仅激活部分参数(例如每次选 2/16 个专家)。例如 Switch Transformer、推测使用该技术的 GPT - 4 等。在相同算力下,这类模型能够支持更大的参数量。

四、按应用领域分层

按照应用领域的不同,大模型主要可以分为 L0、L1、L2 三个层级:

1. L0 层:通用基础大模型

这一层级的大模型是最基础、最通用的模型,它们在海量的多领域数据上进行训练,具备广泛的知识储备和强大的语言理解与生成能力,以及对多种数据模态的处理能力。这些模型通常具有极高的参数规模和复杂的架构,能够为下游的各种应用提供基础的能力支持。它们就像一座摩天大楼的地基,为整个大模型生态系统奠定了坚实的基础。例如 GPT - 4、Gemini Ultra、通义千问、文心一言等,这些模型可以在自然语言处理、计算机视觉、多模态交互等多个领域进行广泛的应用,通过微调或与其他技术结合,可以适应各种具体的任务和场景。

2. L1 层:领域增强大模型

L1 层的大模型是在 L0 层通用基础大模型的基础上,针对特定领域进行优化和增强的模型。它们通过引入领域特定的数据和知识,对基础模型进行微调或二次训练,使得模型在该领域内的表现更加出色。这些模型专注于解决特定领域的问题,能够更好地理解和处理该领域内的专业术语、业务逻辑和数据特点。比如医疗领域的 Med - PaLM、金融领域的天弘基金的 “天算” 大模型、教育领域的松鼠 Ai 的智适应教育大模型等。这些领域增强大模型在各自的领域内能够提供更精准、更专业的服务,例如 Med - PaLM 可以帮助医生进行疾病诊断、药物推荐等医疗任务;金融领域的大模型可以用于风险评估、投资策略制定等。

3. L2 层:场景应用型大模型

L2 层的大模型是直接面向具体业务场景的模型,它们是在 L1 层领域增强大模型的基础上,根据特定场景的需求和数据进行进一步优化和定制的。这些模型紧密贴合实际业务流程,能够为用户提供最直接、最实用的解决方案。例如在智能客服场景中,企业可以基于 L1 层的自然语言处理大模型,结合自身的业务数据和客户服务流程,训练出专门用于回答客户问题、解决客户问题的智能客服大模型;在智能驾驶场景中,汽车制造商可以利用 L1 层的计算机视觉大模型,结合车辆行驶数据和交通场景数据,训练出用于自动驾驶决策的大模型。这些场景应用型大模型能够极大地提高业务效率、改善用户体验,为企业和社会创造直接的价值。

请添加图片描述

五、国内外知名大模型

请添加图片描述

请添加图片描述

1. 国外知名大模型

  • GPT 系列(Generative Pretrained Transformer):由 OpenAI 开发,是目前最具影响力的大模型之一。GPT - 3 以其 1750 亿的参数规模震撼业界,能够生成高质量的文本,在自然语言处理的多个任务上表现出色。GPT - 4 更是在多模态能力上取得突破,能够理解和处理图像、文本等多种输入,并生成相应的高质量输出。

  • Gemini:谷歌推出的大模型,具备强大的多模态处理能力,能够同时处理文本、图像、音频、视频等多种类型的数据和任务。Gemini 包括 Gemini Ultra、Gemini Pro 和 Gemini Nano 三种不同规模的模型,适用于不同的任务和设备。

  • Claude 系列:由 Anthropic 公司开发,Claude 3 在自然语言处理能力上表现优秀,能够进行高质量的对话、文本生成等任务,在安全性和可控性方面也有一定的优势。

  • PaLM(Pathways Language Model):谷歌的大规模语言模型,在自然语言处理任务中展现出强大的性能,能够处理复杂的语言理解和生成任务。

  • Stable Diffusion:一款开源的文本到图像生成模型,能够根据输入的文本描述生成逼真的图像,在创意设计、艺术创作等领域得到了广泛的应用。

  • DALL・E 系列:OpenAI 开发的文本生成图像模型,能够将文本描述转化为富有想象力的图像,推动了人工智能在图像生成领域的发展。

2. 国内知名大模型

  • 文心一言:百度研发的知识增强大模型,基于飞桨深度学习平台,具备知识增强、检索增强和对话增强的技术特色。能够与人对话互动、回答问题、协助创作,在智能客服、智能家居、移动应用等领域有广泛的应用。

  • 通义千问:阿里云推出的超大规模语言模型,具备多轮对话、文案创作、逻辑推理、多模态理解、多语言支持的能力。能够理解自然语言,并生成自然语言文本,同时具备多模态理解能力,可应用于多个领域。

  • ChatGLM 系列:由清华大学和智谱华章联合开发的开源大模型,例如 ChatGLM - 6B 在较小的参数规模下仍能表现出不错的性能,为国内的大模型研究和应用提供了重要的基础。

  • Qwen 系列:由字节跳动开发的大模型,具备较强的语言理解和生成能力,在多种自然语言处理任务中表现出色。

  • 晓悟:中国移动推出的大模型,在通信领域以及相关的智能客服、智能运维等场景中有一定的应用。

  • 豆包:字节跳动公司训练的基于 Transformer 架构的人工智能,能够理解人类语言并生成文本,在自然语言处理任务中,如文本生成、知识问答、阅读理解等方面表现出色,为用户提供准确、有用的信息和帮助。

六、240 余家大模型清单(部分列举)

以下是一份包含 240 余家大模型的清单(由于篇幅有限,仅列举部分),涵盖了国内外的各类大模型,包括语言模型、图像模型、多模态模型等,希望能为你进一步了解大模型提供参考:

模型名称开发公司 / 机构模型类型主要特点
GPT - 4OpenAI多模态大模型强大的语言理解与生成、多模态处理能力
Gemini UltraGoogle多模态大模型综合处理多种数据类型和任务
Claude 3Anthropic语言模型自然语言处理能力优秀,注重安全可控
PaLM 2Google语言模型在自然语言处理任务中性能强劲
Stable DiffusionStability.ai图像生成模型开源,文本生成高质量图像
DALL·E 3OpenAI图像生成模型根据文本描述生成创意图像
文心一言百度语言模型知识增强,多领域应用
通义千问阿里云语言模型多轮对话、多模态理解
ChatGLM - 6B清华大学、智谱华章语言模型开源,小参数规模性能良好
Qwen - 72B字节跳动语言模型较强的语言理解与生成能力
晓悟中国移动语言模型通信领域场景应用
豆包字节跳动语言模型自然语言处理多任务表现出色
Med - PaLMGoogle医疗领域模型专注医疗问答等任务
LexGPTROSS Intelligence法律领域模型法律文书生成等
CodeLlamaMeta编程领域模型代码生成能力强
Llama 2Meta语言模型开源可商用,700 亿参数
SAM(Segment Anything Model)Meta图像分割模型精准分割图像元素
DINOv2Meta计算机视觉模型自监督训练,理解图像能力强
Emu VideoMeta文本到视频模型文本生成视频
AudioboxMeta文本到音频模型文本生成音乐和音效
GraphormerMicrosoft结合图神经网络的模型分子结构预测等
FLAN - T5Google多任务模型指令微调,多任务处理
Switch TransformerGoogle混合架构模型动态激活专家模块
CLIPOpenAI图文匹配模型实现跨模态理解
WhisperOpenAI语音转文本模型语音识别

请添加图片描述

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值