数据化建设知识图谱(文末附PDF下载)

一、前言导读

如今,国家大力倡导数字化,随之而来的各种数据概念也铺天盖地,数字化转型、数据中台、智慧XXX......

面对这些高举的概念,身为IT工程师和数据建设者该如何着手,想必都有不少困惑和苦水。

其实,无论数据领域的概念如何推陈出新,都是为了业务和经营上的创新变革,也都需要数据化和信息化的沉淀,背后都离不开一整套数据化建设。即使技术变化最快的互联网行业,阿里也是经历了数据库、数仓和数据平台的沉淀,再到数据中台,来支撑它日益增长的业务。

所以,我们也在想,该如何总结企业的数据化建设?

绝大部分企业都会走过这样的路:数据的采集整合、为满足业务分析等应用的数据平台搭建、为响应更高更快性能的的大数据存储和计算技术、深度结合业务的挖掘和创新应用、反哺数据规范的数据治理等......

基于以上,帆软数据应用研究院将这一套理论总结成了一份《数据化建设知识图谱》

若等不及的朋友 可直接拉倒文章底部查看《数据化建设知识图谱》PDF文档获取方式👇🏻

二、内容

2.1 全图概览

数据质量保障→数据平台搭建→数据应用落地 这一思路切入,分别整理了 数据治理、数据仓库、大数据平台、数据中台、报表&BI体系、数据分析与挖掘这6大模块知识。

不同于书籍的包罗万象,也不同于课程注重技能,这份图谱的作用更多在于体系化知识的整理,快速扫盲,在脑中建立知识版图,所谓“一图在手,知识全有” 。

👆🏻展开来是87CM*58CM的超大图谱

这份《数据化建设知识图谱》确实惊艳到了,内容之详细,质量之高

2.2 模块细看

比如数据仓库模块,侧重传统数据平台的开发方法论,其实这一套基础用在大数据平台和数据中台也需要。

大数据平台,更多的是面向IT开发的技术栈应用,所以这里更侧重技术栈知识点的整理。

数据中台,各家之言,其建设也严重依赖与业务和组织,所以这里整理了一套思路。

👆🏻冰山一角,完整版请看《数据化建设知识图谱》

另外,数据应用方面,比如报表和BI分析体系,这类成熟的应用(也是帆软所长)会更加注重经验的总结;数据分析和数据挖掘针对专业的数据分析从业者,更侧重技能点的整理。数据治理,就更丰富了,几大模块都汇总在了十几张框架图中。

三、如何获取图谱

① 请关注公众号【大数据阶梯之路】

② 添加大数据阶梯之路微信号:bigdata_ladder,获取《数据化建设知识图谱》PDF 文档,

(PS:加好友申请记得表明来意哈,备注「资料 or 进群」)

还可获取原创hive企业级优化PDF文档👇🏻

知识图谱是一种将知识以图形的形式表示出来的工具,可以帮助组织和理解大量的复杂信息。数据建设知识图谱是指将各类数据知识图谱的过程,以便更好地利用数据进行分析、发现和决策。 在数据建设知识图谱的过程中,首先需要收集和整理相关的数据,并将其转为可视的图形表示形式。这些数据可以包括文本、图片、音频、视频等各种形式的信息。通过对这些数据进行处理和分析,可以提取出其中的关键信息和知识点。 接下来,将提取出的关键信息和知识点进行组织和链接,形成知识图谱的结构。知识图谱的结构一般分为实体、关系和属性三个主要的组成部分。实体表示具体的事物或概念,关系表示实体之间的联系,属性表示实体的特征或属性。 在知识图谱中,可以使用图数据库或其他相关的技术和工具进行存储和管理。通过对知识图谱进行查询和分析,可以快速地获取到所需的信息,从而支持决策和创新。 数据建设知识图谱具有很多的优势和应用场景。它可以帮助组织识别和理解数据中的模式和规律,发现隐藏在大量数据背后的价值。同时,知识图谱还可以用于推荐系统、智能搜索、智能问答等方面,提供更加个性和精准的服务。 总之,数据建设知识图谱是一种利用数据构建和应用知识的方法,可以帮助我们更好地理解和利用大量的信息。它不仅可以提高数据的利用价值,还可以支持各种决策和创新活动的进行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值