奇异矩阵与非奇异矩阵

首先需要说明的值奇异矩阵和非奇异矩阵都是针对方阵而言的。
奇异矩阵是线性代数的概念,就是对应的行列式等于0的矩阵。
对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =I( I是单位矩阵),则称 A 是可逆的,也称 A 为非奇异矩阵。

非奇异矩阵的英文是nonsingular matrices,从对应的英文单词nonsingular上来讲,singular有一个含义是单数的,那么nonsingular是非单数,与非奇异矩阵的性质对上了,即有矩阵A,矩阵B,满足条件:AB=BA=I,I是一个单元矩阵,那么矩阵A和矩阵B均为非奇异矩阵。非奇异,即A不是单个的,是成对的。

奇异矩阵的判定方法:

  1. 行列式|A|是否等于0,若等于0,称矩阵A为奇异矩阵;

非奇异矩阵的判定方法:

  1. 一个矩阵非奇异当且仅当它的行列式不为零。
  2. 一个矩阵非奇异当且仅当它代表的线性变换是个自同构。
  3. 一个矩阵非奇异当且仅当它的秩为n。 (R(A)<n则行列式为0)
  4. 可逆矩阵就是非奇异矩阵,非奇异矩阵也是可逆矩阵。**

原文链接:

  1. 奇异矩阵和非奇异矩阵有啥差别?
  2. 关于非奇异矩阵
奇异矩阵(Singular Matrix)在线性代数中是一个非常重要的概念,指的是一个方阵的行列式为零的矩阵奇异矩阵在很多线性代数运算中具有特殊的性质和应用。以下是奇异矩阵的一些主要特点和应用: 1. **行列式为零**:奇异矩阵的行列式(determinant)为零,这是判断一个矩阵是否奇异的主要方法。 2. **不可逆**:奇异矩阵没有逆矩阵(inverse matrix)。逆矩阵是方阵的一个重要性质,逆矩阵的存在条件是矩阵的行列式不为零。 3. **线性依赖**:奇异矩阵的行向量或列向量线性相关(linearly dependent)。线性相关性意味着矩阵的某些行或列可以通过其他行或列的线性组合来表示。 4. **解的唯一性**:如果一个线性方程组的系数矩阵奇异的,那么这个方程组可能没有唯一解,可能有无穷多解或无解。 奇异矩阵在电路仿真软件如Multisim中的应用主要体现在以下几个方面: 1. **电路分析**:在电路分析中,奇异矩阵可能出现在电路的节点电压方程或网孔电流方程中。这些矩阵奇异性质可以帮助分析电路的特性和行为。 2. **稳定性分析**:在电路设计中,奇异矩阵可以用于分析电路的稳定性。通过检查矩阵奇异性,可以判断电路是否存在不稳定因素。 3. **故障诊断**:奇异矩阵还可以用于电路故障诊断。通过分析矩阵奇异性,可以检测电路中的某些故障或异常情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值