如何判断矩阵是否可逆?
一般情况下,判断矩阵是否可逆大多数人都会选择计算矩阵的行列式(determinant)?如果矩阵的行列式为0,则判断该矩阵为奇异矩阵(singular matrix),即不可逆矩阵。而如果该矩阵的行列式不为0,则判断该矩阵为非奇异矩阵(nonsingular matrix)。
以3x3的单位矩阵为例
Matlab code:
Result:
现在我们略微改变一下这个矩阵,把原单位阵中的第一个值改成0,则该矩阵不可逆,
一般情况下,判断矩阵是否可逆大多数人都会选择计算矩阵的行列式(determinant)?如果矩阵的行列式为0,则判断该矩阵为奇异矩阵(singular matrix),即不可逆矩阵。而如果该矩阵的行列式不为0,则判断该矩阵为非奇异矩阵(nonsingular matrix)。
以3x3的单位矩阵为例
Matlab code:
Result:
现在我们略微改变一下这个矩阵,把原单位阵中的第一个值改成0,则该矩阵不可逆,