线性代数 --- 如何判断矩阵是否可逆(奇异与非奇异)?

如何判断矩阵是否可逆? 

       

        一般情况下,判断矩阵是否可逆大多数人都会选择计算矩阵的行列式(determinant)?如果矩阵的行列式为0,则判断该矩阵为奇异矩阵(singular matrix),即不可逆矩阵。而如果该矩阵的行列式不为0,则判断该矩阵为非奇异矩阵(nonsingular matrix)。

以3x3的单位矩阵为例

Matlab code:

 Result:

        现在我们略微改变一下这个矩阵,把原单位阵中的第一个值改成0,则该矩阵不可逆,

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松下J27

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值