从技术经理到CTO -《技术为径》读书笔记

从技术经理的能力边界,再往前就需要考虑系统的商业模式,如何变现盈利,用户如何交互和增长,其实有无限的可能性。从技术小组长的职责开始,跟管理多个团队的过程,其实是很像的,如何设定目标,监督评估执行进度,会变成更重要的事情。

无论是一对一沟通,任务拆分,通过敏捷方法快速迭代发布,还是时间管理、定义优先级,都是为了把事情做成。

技术管理的最终目标是业务成功


非常明显的趋势是,随着管理职责越来越大,主要任务逐渐从管理过程变成定义目标、组织资源和团队结构,要深入的理解业务,并通过技术和管理推动业务和公司在商业上成功。之后要具备在信息不完备的情况下做决策的能力,同时对决策产生的后果负责,也就是战略。

感觉越往后面越有意思,在规模较大的组织,高层必然需要跟团队保持一定距离感,这样就不会传递非预期的错误信号,因为高管的任何态度,都会被组织层级放大,所以必须小心翼翼的表达自己的观点;

有时放慢响应速度是有意义的,真正重要的事,值得说三遍,不然有可能是干扰信号或者过度反应,一旦做出决策,组织就需要调动资源应对,如果任何信号都处理,无论精力还是资源都会造成浪费,所以作者指出,应该先让子弹飞一会。

图片

管理研发过程


一个复杂但有效的系统往往是从一个有效的简单系统演化而来的,一个从头设计的复杂系统是不可能正常运行的,再怎么修补也无济于事,必须从一个可以运行的简单系统开始。

管理者的首要任务,是搞清楚对自己团队的客户,什么才是最重要的,从产品和技术角度超前思考

帮助团队成员了解哪些目标是关键的,并且能够专注在关键的目标上,每个人都应该意识到,自己应该只关注那些凭借自己的努力可以改变的事情,而忽视那些自己本来就无能为力的事,这应该就是能力圈吧。

在实际开发的过程中,哪怕响应变化优于遵循计划,团队也要培养制定计划的习惯,制定的过程,可以强迫工程师动手之前,先对项目进行深度的思考,必要的设计和思考过程,是非常有价值的。

研发时间的损耗,在现代软件开发过程中,似乎是根本无法避免的,哪怕排除非技术因素,在技术层面,也有非计划内的不可控时间开销,使得理想情况无法达到,调研、调试、联调对接、问题排查或者结构性代码重构。

作者认为,应该预留20%时间在处理这些研发可持续性工作上,我觉得这是很务实的。就算理想情况下,这些不确定性活动,也是会带来风险,影响计划的固有因素,如果计划提前识别,主动优化,不但可以更有可行性,还能通过优化债务,实现价值提升。

最重要的事情是定义目标


无论什么时候,定义目标都是至关重要的,尤其是管理范围更大,能调动更多资源之后,设定目标,会变成最重要的事情。

只有能够精确测量的事情,才能改进。一个管理者帮助团队成功的方式,是创造一个清晰,针对性强,以及可衡量的目标。

而最好的管理,就是团队不断打胜战,制定小型目标并且不断取得胜利,是人类获得成就感的重要方式。

为此要把复杂的最终目标,拆分成小目标,并且以最高效的方式排序,识别依赖关系和优先级至关重要。

如果设定了目标,就必须想尽一切办法实现这个目标,而不能只是等待,直接说出来,往往是推动事情发展的最快方法。

从技术小组长到CTO


技术小组长不仅要继续交付高质量代码,还要承担作为技术代表与管理层合作的职责,还要通过项目管理能力,将大型项目拆解为一个个小型项目。

技术经理需要向技术团队交付一系列定义清晰,实现成本合理的产品需求,同时向产品团队解释清楚完成所有需求所需要的额外时间。

技术总监的工作重心是保障复杂业务需求的持续顺利交付,为此要持续评估和优化内部开发流程和基础设施,以便团队能持续高效交付业务需求,构建高效灵活的团队结构,根据业务需求发展,不停迭代技术团队内部流程。

CTO,应该思考公司长期发展,帮助公司制定未来业务计划,以及执行细节,将长期战略转化为实际可执行的计划,对问题进行拆分并指挥具体执行过程。

越往上,管理的职责会越来越接近产品负责人,最终承担如何让业务成功的目标。

图片

如果您喜欢这篇文章,欢迎关注我的公众号【软件十书】,获取更多精彩内容,点击阅读原文

内容概要:本文介绍了基于LSTM(长短期记忆神经网络)和Attention机制结合的锂电池剩余寿命预测项目的详细实施过程和相关技术细节。项目旨在通过MATLAB实现高效且准确的锂电池剩余寿命预测模型。模型通过LSTM捕捉电池使用过程中的长时依赖关系,并借助Attention机制聚焦于数据中影响预测的关键特征,从而显著提升了预测精度。文档涵盖了数据预处理、模型构建与训练、性能评估、模型部署以及潜在扩展等各个环节,并提供了详细的代码实现和GUI界面设计指导。通过这个项目,开发者可以获得一手经验和技术指导,以解决锂电池在各种应用场景下的寿命预测问题。 适合人群:对锂离子电池寿命预测及其背后的机器学习技术有兴趣的研发人员、工程师和研究人员。尤其适合具有一定编程基础并且熟悉MATLAB和深度学习基本概念的从业人员。 使用场景及目标:该项目可应用于新能源汽车、储能系统、消费电子产品(如手机和平板电脑)、无人机以及智能电网等多个领域,用来提高这些产品中锂电池的有效使用周期,降低维护成本,提升安全性和效率。同时它也为企业提供了一套标准化的数据处理和预测工具包,有助于行业规范和发展。 其他说明:文中提到的技术难点和解决方案为实际应用中的难题提供了参考意见;比如,通过正则化防止过拟合,利用GPU/TPU加速计算,确保实时处理能力,保障数据安全等。除此之外,本文讨论了模型的可解释性问题,并提出了几种改进的方向,如引入更多种类的传感器数据进行多任务学习,加强在线学习和支持分布式预测等功能,以适配更广阔的应用场景。此外,文章还包含了对未来发展趋势的展望,鼓励研究社区不断探索新方法和技术路线,进而完善该类预测模型的实际表现。
内容概要:本文档介绍了基于MATLAB实现的NGO-BP(Northern Goshawk Optimization-back propagation,北方苍鹰算法优化BP神经网络)算法优化多输入多输出(MIMO)系统预测的完整项目实例。文档从项目背景与目标出发,详述了项目的挑战及其解决方案,特别强调了NGO算法在全球搜索和局部搜索方面对BP神经网络优化的关键作用。文中还包括项目架构、各模块的设计(如数据预处理、NGO优化、BP网络训练、模型评估与结果输出)、详细源代码示例及图形用户界面(GUI)实现。文档还讨论了项目的应用场景(如工业控制、气象预测、金融风险等),指出了模型的性能优势与改进方向,涵盖了模型更新、大规模数据处理等方面的潜在扩展。 适合人群:熟悉MATLAB编程语言,有一定神经网络基础知识的技术人员,尤其适合从事MIMO系统预测工作的科研工作者或工程师。 使用场景及目标:①适用于需要提升神经网络在多输入多输出系统预测精度和收敛速度的情景,比如智能制造、金融市场分析等领域;②作为学习资料帮助研究人员掌握BP神经网络结合NGO算法的实现过程和技术要点,以推进相关技术的深入研究和发展;③为希望将此类模型部署于生产环境的团队提供从开发到运维全链条的知识指导,如GPU加速、实时数据分析与可视化。 其他说明:文档提供了一整套详细的工程实现方法论,包括但不限于代码细节和GUI设计技巧,并针对可能出现的问题给予了提示和预防措施,如数据预处理的重要性以及超参数的选择等。同时,它也为项目的未来改进预留空间,鼓励采用更多高级技术和跨领域能力提升模型的整体效能,确保其在不断变化的实际环境中保持竞争力。此外,文档也关注到了安全性与用户隐私保护等方面的内容,保证系统的稳健性和合法性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值