问题
一个无序整型数组,求出该数组排序后任意两个相邻元素的最大差值。
思路
1、排序后遍历
时间复杂度:O(nlogn)
这是最简单的方案,随便找一个时间复杂度O(nlogn)的排序算法,排好序后遍历一轮即可找到最大差值。
2、计数排序
时间复杂度:O(n)
计数排序利用数组下标找到元素值,可把时间复杂度降到O(n)。
同样是先排序,后统计找到哪两个元素在数组间空了最多空位即为最大差值。
3、桶排序
时间复杂度:O(n)
之所以会用到桶排序,是因为计数排序有其局限性。
当元素差值过大时,如1,2,10000。
需要申请的辅助空间过于庞大!
桶排序的思路是根据原始序列长度n,创建n+1个桶。
根据序列max、min值平均划分每个桶的区间。
而每个桶只需要记录桶内的最大最小值即可。
最后遍历所有桶,计算 当前桶的max 与 下个非空桶的min 之间的差值,最大即所求。
思考
以上三种思路都非常好理解,只要熟悉基本的排序算法的话。
但是仔细思考,桶排序似乎有些疑点🤔️:
为什么最大差值一定出现在桶间?有没有可能在桶内呢?
证明
这一定是爱思考的人避不开的问题!
我们来举个例子,会比较形象一点:
A = {0,45,47,27,22,31,83,23,99}
可得信息:
- n = 9
- min = 0
- max = 99
根据第三种思路,我们创建10个桶(9+1)。
🔑🔑 为什么要10个桶呢?一般桶排序只需要n个元素n个桶就可以了呀?
这就是这个算法的巧妙之处了,也是为什么最大相邻差必定在桶间的原因!
由于我们只有9个元素,而桶却有10个。也就是说,必然存在一个空桶!
桶内最大的差值是9,而空桶两边相邻非空桶之间最大差值最小情况为11!
用白话说就是,怎么着也轮不到你桶内是最大!😎
综上所述,也就是由于桶的数量取n+1,保证了最大相邻差一定是在桶间!
如果对您有帮助的话,请点个赞吧!! 😋😋