三角学(一)公式,恒等式,函数和难题
Trigonometry - Formulas, Identities, Functions and Problems
三角学:公式,恒等式,函数和难题
三角学是数学的一个重要分支,主要涉及角度的特定函数及其应用和计算。在数学中,总共有六种不同类型的三角函数: 正弦( sin \sin sin),余弦( cos \cos cos),正割( sec \sec sec),余割( cosec \cosec cosec),正切( tan \tan tan)和余切(cot)。这六种不同类型的三角函数象征着直角三角形的不同边的比率之间的关系。这些三角函数也可以被称为弧度函数,因为它们的值可以被描述为半径为 1 1 1 的圆的 x x x 和 y y y 坐标的比率,与标准位置的角保持联系。
三角关系式定义
完全可以根据直角三角形的三边来进行严格定义,最基本的就是两个函数:正弦和余弦,其它函数都可以由这两个函数推导出来。
这些三角函数与三角形的边之间的关系可以给出如下:
sin ( θ ) = 对 边 斜 边 = O p p o s i t e H y p o t e n u s e cos ( θ ) = 邻 边 斜 边 = A d j a c e n t H y p o t e n u s e tan ( θ ) = 对 边 邻 边 = O p p o s i t e A d j a c e n t csc ( θ ) = 1 sin ( θ ) = H y p o t e n u s e O p p o s i t e sec ( θ ) = 1 cos ( θ ) = H y p o t e n u s e A d j a c e n t cot ( θ ) = 1 tan ( θ ) = A d j a c e n t O p p o s i t e \begin{array}{lll} \sin (\theta) = \frac{对边}{斜边}=\frac {Opposite}{Hypotenuse}\qquad & \cos (\theta) =\frac{邻边}{斜边}= \frac {Adjacent}{Hypotenuse} \qquad & \tan (\theta) =\frac{对边}{邻边}= \frac {Opposite}{Adjacent} \\ \csc (\theta) = \frac{1}{\sin(\theta)} = \frac {Hypotenuse}{Opposite} \qquad & \sec (\theta) = \frac{1}{\cos(\theta)} = \frac {Hypotenuse}{Adjacent} \qquad & \cot (\theta) = \frac{1}{\tan(\theta)} = \frac {Adjacent}{Opposite} \end{array} sin(θ)=斜边对边=HypotenuseOppositecsc(θ)=sin(θ)1=OppositeHypotenusecos(θ)=斜边邻边=HypotenuseAdjacentsec(θ)=cos(θ)1=AdjacentHypotenusetan(θ)=邻边对边=AdjacentOppositecot(θ)=tan(θ)1=OppositeAdjacent
三角函数对研究三角形、光、声或波非常重要,它们在不同领域和范围内的数值可以从下表得到。
表1: 三角函数在不同领域和范围内的值。
三角函数 | 定义域Domain | 值域Range |
---|---|---|
sin x \sin x sinx | R \mathbb{R} R,周期函数 | − 1 ⩽ sin x ⩽ 1 -1\leqslant \sin x\leqslant 1 −1⩽sinx⩽1 |
cos x \cos x cosx | R \mathbb{R} R,周期函数 | − 1 ⩽ cos x ⩽ 1 -1\leqslant \cos x\leqslant 1 −1⩽cosx⩽1 |
tan x \tan x tanx | R ∖ { 2 n + 1 2 π , n ∈ Z } \mathbb{R}\setminus\{\dfrac{2n+1}{2}\pi,\; n\in \mathbb{Z}\} R∖{22n+1π,n∈Z} | R \mathbb{R} R |
csc x \csc x cscx | R ∖ { n π , n ∈ Z } \mathbb{R}\setminus\{n \pi, n\in \mathbb{Z}\} R∖{nπ,n∈Z} | R ∖ { x : − 1 < x < 1 } \mathbb{R}\setminus \{x: -1\lt x\lt 1\} R∖{x:−1<x<1} |
sec x \sec x secx | R ∖ { 2 n + 1 2 π , n ∈ Z } \mathbb{R}\setminus\{\dfrac{2n+1}{2}\pi, n\in \mathbb{Z}\} R∖{22n+1π,n∈Z} | R ∖ { x : − 1 < x < 1 } \mathbb{R}\setminus \{x:-1\lt x \lt 1\} R∖{x:−1<x<1} |
cot x \cot x cotx | R ∖ { n π , n ∈ Z } \mathbb{R}\setminus \{n \pi, n\in \mathbb{Z}\} R∖{nπ,n∈Z} | R \mathbb{R} R |
表2: 特殊角度的三角函数值,直接用于实际问题中。
角度 | 0 ∘ 0^{\circ} 0∘ | 3 0 ∘ 30^{\circ} 30∘ | 4 5 ∘ 45^{\circ} 45∘ | 6 0 ∘ 60^{\circ} 60∘ | 9 0 ∘ 90^{\circ} 90∘ |
---|---|---|---|---|---|
sin \sin sin | 0 | 1 2 \dfrac{1}{2} 21 | 1 2 \dfrac{1}{\sqrt{2}} 21 | 3 2 \dfrac{\sqrt{3}}{2} 23 | 1 |
cos \cos cos | 1 | 3 2 \dfrac{\sqrt{3}}{2} 23 | 1 2 \dfrac{1}{\sqrt{2}} 21 | 1 2 \dfrac{1}{2} 21 | 0 |
tan \tan tan | 0 | 1 3 \dfrac{1}{\sqrt{3}} 31 | 1 | 3 \sqrt{3} 3 | ∞ \infty ∞ |
csc \csc csc | ∞ \infty ∞ | 2 2 2 | 2 \sqrt{2} 2 | 2 3 \dfrac{2}{\sqrt{3}} 32 | 1 |
sec \sec sec | 1 | 2 3 \dfrac{2}{\sqrt{3}} 32 | 2 \sqrt{2} 2 | 2 | ∞ \infty ∞ |
cot \cot cot | ∞ \infty ∞ | 3 \sqrt{3} 3 | 1 | 1 3 \dfrac{1}{\sqrt{3}} 31 | 0 |
上表认可 1 0 = ∞ , 1 ∞ = 0 \dfrac{1}{0}=\infty, \dfrac{1}{\infty}=0 01=∞,∞1=0
恒等式和公式
一些常用的恒等式和公式通常用于寻找三角函数的比率,如下所述:
倍角或三倍角恒等式
Double or Triple angle identities:
- sin 2 x = 2 sin x cos x \sin 2x = 2 \sin x \cos x sin2x=2sinxcosx
- cos 2 x = cos 2 x – sin 2 x = 1 – 2 sin 2 x = 2 cos 2 x – 1 \cos 2x = \cos^{2}x – \sin^{2}x = 1 – 2 \sin^{2}x = 2 \cos^{2}x – 1 cos2x=cos2x–sin2x=1–2sin2x=2cos2x–1
- tan 2 x = 2 tan x 1 − tan 2 x \tan 2x = \dfrac {2 \tan x}{1-\tan^{2}x} tan2x=1−tan2x2tanx
- sin 3 x = 3 sin x – 4 sin 3 x \sin 3x = 3 \sin x – 4 \sin^{3}x sin3x=3sinx–4sin3x
- cos 3 x = 4 cos 3 x – 3 cos x \cos 3x = 4 \cos^{3}x – 3 \cos x cos3x=4cos3x–3cosx
- tan 3 x = 3 tan x – tan 3 x 1 − 3 tan 2 x \tan 3x = \dfrac {3 \tan x – \tan^{3}x}{1- 3\tan^{2}x} tan3x=1−3tan2x3tanx–tan3x
和差公式(不同角)
- sin ( α + β ) = sin ( α ) cos ( β ) + cos ( α ) sin ( β ) \sin (\alpha + \beta) = \sin(\alpha) \cos(\beta) + \cos(\alpha) \sin(\beta) sin(α+β)=sin(α)cos(β)+cos(α)sin(β)
- sin ( α − β ) = sin ( α ) cos ( β ) – cos ( α ) sin ( β ) \sin (\alpha - \beta) = \sin(\alpha) \cos(\beta) – \cos(\alpha) \sin(\beta) sin(α−β)=sin(α)cos(β)–cos(α)sin(β)
- cos ( α + β ) = cos ( α ) cos ( β ) – sin ( α ) sin ( β ) \cos (\alpha + \beta) = \cos(\alpha) \cos(\beta) – \sin(\alpha) \sin(\beta) cos(α+β)=cos(α)cos(β)–sin(α)sin(β)
- cos ( α – β ) = cos ( α ) cos ( β ) + sin ( α ) sin ( β ) \cos (\alpha – \beta) = \cos(\alpha) \cos(\beta) + \sin(\alpha) \sin(\beta) cos(α–β)=cos(α)cos(β)+sin(α)sin(β)
- tan ( α + β ) = tan ( α ) + tan ( β ) 1 – tan ( α ) tan ( β ) \tan (\alpha + \beta) = \dfrac {\tan(\alpha)+\tan(\beta)}{1–\tan(\alpha) \tan(\beta)} tan(α+β)=1–tan(α)tan(β)tan(α)+tan(β)
- tan ( α – β ) = tan ( α ) – tan ( β ) 1 + tan ( α ) tan ( β ) \tan (\alpha – \beta) = \dfrac{\tan(\alpha)–\tan(\beta)}{ 1+\tan(\alpha)\tan(\beta)} tan(α–β)=1+tan(α)tan(β)tan(α)–tan(β)
- tan ( π 4 + θ ) = 1 + tan θ 1 – tan θ \tan (\dfrac{\pi}{4} + \theta) = \dfrac {1 + \tan \theta}{1 – \tan \theta} tan(4π+θ)=1–tanθ1+tanθ
- tan ( π 4 − θ ) = 1 – tan θ 1 + tan θ \tan (\dfrac{\pi}{4} - \theta) = \dfrac {1 – \tan \theta}{1 + \tan \theta} tan(4π−θ)=1+tanθ1–tanθ
- cot ( α + β ) = cot ( α ) . cot ( β ) – 1 cot ( α ) + cot ( β ) \cot (\alpha + \beta) = \dfrac {\cot(\alpha).\cot(\beta)–1}{\cot(\alpha)+\cot(\beta)} cot(α+β)=cot(α)+cot(β)cot(α).cot(β)–1
- cot ( α – β ) = cot ( α ) . cot ( β ) + 1 cot ( β ) – cot ( α ) \cot (\alpha – \beta) = \dfrac {\cot(\alpha).\cot(\beta)+1} {\cot(\beta)–\cot(\alpha)} cot(α–β)=cot(β)–cot(α)cot(α).cot(β)+1
三个不同角,使用下面提到的三角函数
- sin ( A + B + C ) = sin A cos B cos C + cos A sin B cos C + cos A cos B sin C – sin A sin B sin C . \sin (A+B+C) = \sin A\cos B\cos C + \cos A\sin B\cos C + \cos A \cos B \sin C – \sin A \sin B \sin C. sin(A+B+C)=sinAcosBcosC+cosAsinBcosC+cosAcosBsinC–sinAsinBsinC.
- sin ( A + B + C ) = ( − sin ( B ) sin ( C ) + cos ( B ) cos ( C ) ) sin ( A ) + ( sin ( B ) cos ( C ) + sin ( C ) cos ( B ) ) cos ( A ) \sin (A+B+C) = \left(- \sin{\left(B \right)} \sin{\left(C \right)} + \cos{\left(B \right)} \cos{\left(C \right)}\right) \sin{\left(A \right)} + \left(\sin{\left(B \right)} \cos{\left(C \right)} + \sin{\left(C \right)} \cos{\left(B \right)}\right) \cos{\left(A \right)} sin(A+B+C)=(−sin(B)sin(C)+cos(B)cos(C))sin(A)+(sin(B)cos(C)+sin(C)cos(B))cos(A)
- cos ( A + B + C ) = cos A cos B cos C – cos A sin B sin C – sin A cos B sin C – sin A sin B cos C . \cos (A+B+C) = \cos A \cos B \cos C – \cos A \sin B \sin C – \sin A \cos B \sin C – \sin A \sin B \cos C. cos(A+B+C)=cosAcosBcosC–cosAsinBsinC–sinAcosBsinC–sinAsinBcosC.
- cos ( A + B + C ) = ( − sin ( B ) sin ( C ) + cos ( B ) cos ( C ) ) cos ( A ) − ( sin ( B ) cos ( C ) + sin ( C ) cos ( B ) ) sin ( A ) \cos (A+B+C) = \left(- \sin{\left(B \right)} \sin{\left(C \right)} + \cos{\left(B \right)} \cos{\left(C \right)}\right) \cos{\left(A \right)} - \left(\sin{\left(B \right)} \cos{\left(C \right)} + \sin{\left(C \right)} \cos{\left(B \right)}\right) \sin{\left(A \right)} cos(A+B+C)=(−sin(B)sin(C)+cos(B)cos(C))cos(A)−(sin(B)cos(C)+sin(C)cos(B))sin(A)
- tan ( A + B + C ) = tan A + tan B + tan C – tan A tan B tan C 1 – tan A tan B – tan B tan C – tan A tan C \tan (A+B+C) =\dfrac { \tan A + \tan B + \tan C – \tan A \tan B \tan C}{ 1 – \tan A \tan B – \tan B \tan C – \tan A \tan C} tan(A+B+C)=1–tanAtanB–tanBtanC–tanAtanCtanA+tanB+tanC–tanAtanBtanC
- tan ( A + B + C ) = − tan ( A ) tan ( B ) tan ( C ) + tan ( A ) + tan ( B ) + tan ( C ) − tan ( A ) tan ( B ) − tan ( A ) tan ( C ) − tan ( B ) tan ( C ) + 1 \tan (A+B+C) =\frac{- \tan{\left(A \right)} \tan{\left(B \right)} \tan{\left(C \right)} + \tan{\left(A \right)} + \tan{\left(B \right)} + \tan{\left(C \right)}}{- \tan{\left(A \right)} \tan{\left(B \right)} - \tan{\left(A \right)} \tan{\left(C \right)} - \tan{\left(B \right)} \tan{\left(C \right)} + 1} tan(A+B+C)=−tan(A)tan(B)−tan(A)tan(C)−tan(B)tan(C)+1−tan(A)tan(B)tan(C)+tan(A)+tan(B)+tan(C)
- cot ( A + B + C ) = cot A cot B cot C – cot A – cot B – cot C cot A cot B + cot B cot C + cot A cot C – 1 \cot (A+B+C) = \dfrac {\cot A \cot B \cot C – \cot A–\cot B–\cot C}{\cot A \cot B + \cot B \cot C + \cot A \cot C – 1} cot(A+B+C)=cotAcotB+cotBcotC+cotAcotC–1cotAcotBcotC–cotA–cotB–cotC
- cot ( A + B + C ) = cot ( A ) cot ( B ) cot ( C ) − cot ( A ) − cot ( B ) − cot ( C ) cot ( A ) cot ( B ) + cot ( A ) cot ( C ) + cot ( B ) cot ( C ) − 1 \cot (A+B+C) = \frac{\cot{\left(A \right)} \cot{\left(B \right)} \cot{\left(C \right)} - \cot{\left(A \right)} - \cot{\left(B \right)} - \cot{\left(C \right)}}{\cot{\left(A \right)} \cot{\left(B \right)} + \cot{\left(A \right)} \cot{\left(C \right)} + \cot{\left(B \right)} \cot{\left(C \right)} - 1} cot(A+B+C)=cot(A)cot(B)+cot(A)cot(C)+cot(B)cot(C)−1cot(A)cot(B)cot(C)−cot(A)−cot(B)−cot(C)
>>> expand_trig(sin(A+B+C))
(-sin(B)*sin(C) + cos(B)*cos(C))*sin(A) + (sin(B)*cos(C) + sin(C)*cos(B))*cos(A)
>>> print(latex(_))
>>> expand_trig(cos(A+B+C))
(-sin(B)*sin(C) + cos(B)*cos(C))*cos(A) - (sin(B)*cos(C) + sin(C)*cos(B))*sin(A)
>>> print(latex(_))
同角三角函数之间的关系
- sin A = 1 csc A \sin A = \dfrac {1}{\csc A} sinA=cscA1
- cos A = 1 sec A \cos A = \dfrac {1}{\sec A} cosA=secA1
- sec A = 1 cos A \sec A = \dfrac{1}{\cos A} secA=cosA1
- csc A = 1 sin A \csc A = \dfrac{1}{\sin A} cscA=sinA1
- tan A = 1 cot A = sin A cos A \tan A = \dfrac {1}{\cot A} = \dfrac {\sin A}{\cos A } tanA=cotA1=cosAsinA
- cot A = 1 tan A = cos A sin A \cot A = \dfrac {1}{\tan A} = \dfrac {\cos A}{\sin A } cotA=tanA1=sinAcosA
三角函数的最小正周期
- sin ( x + 2 π ) = sin x \sin (x + 2\pi ) = \sin x sin(x+2π)=sinx
- cos ( x + 2 π ) = cos x \cos (x + 2\pi ) = \cos x cos(x+2π)=cosx
- tan ( x + π ) = tan x \tan (x + \pi ) = \tan x tan(x+π)=tanx
- cot ( x + π ) = cot x \cot (x + \pi ) = \cot x cot(x+π)=cotx
三角函数的半角公式
- sin x 2 = ± 1 − cos x 2 \sin \dfrac{x}{2} = ±\sqrt{\dfrac{1-\cos x}{2}} sin2x=±21−cosx
- cos x 2 = ± 1 + cos x 2 \cos \dfrac{x}{2}= ±\sqrt{\dfrac{1+\cos x}{2}} cos2x=±21+cosx
- tan x 2 = 1 − cos x 1 + cos x = 1 − cos x sin x = sin x 1 + cos x \tan \dfrac{x}{2}= \sqrt{\dfrac{1- \cos x}{1+ \cos x}} = \dfrac{1- \cos x}{\sin x} = \dfrac{\sin x}{1+\cos x} tan2x=1+cosx1−cosx=sinx1−cosx=1+cosxsinx
和差化积公式(不同角)
For Sum To Product Trigonometric Identities:
- sin α ± sin β = 2 sin 1 2 ( α ± β ) cos 1 2 ( α ∓ β ) \sin \alpha ± \sin \beta = 2 \sin{\frac{1}{2}}(\alpha ± \beta) \cos {\frac{1}{2}}(\alpha ∓ \beta) sinα±sinβ=2sin21(α±β)cos21(α∓β)
- cos α + cos β = 2 cos 1 2 ( α + β ) cos 1 2 ( α − β ) \cos \alpha + \cos \beta=2 \cos{\frac{1}{2}} (\alpha + \beta) \cos{\frac{1}{2}} (\alpha - \beta) cosα+cosβ=2cos21(α+β)cos21(α−β)
- cos α – cos β = − 2 sin 1 2 ( α + β ) sin 1 2 ( α – β ) \cos \alpha – \cos \beta = - 2 \sin \frac{1}{2}(\alpha + \beta) \sin \frac{1}{2}(\alpha – \beta) cosα–cosβ=−2sin21(α+β)sin21(α–β)
平方公式
Square Law Formulas:
- sin 2 x + cos 2 x = 1 \sin^2x + \cos^2x = 1 sin2x+cos2x=1
- tan 2 x = 1 + sec 2 x \tan^2x = 1 + \sec^2x tan2x=1+sec2x
- cot 2 x = 1 + csc 2 x \cot^2x = 1 + \csc^2x cot2x=1+csc2x
诱导公式
三角函数的值会随着角度的变化而变化,但是对于 9 0 ∘ ± θ 90^{\circ} \pm \theta 90∘±θ 和 27 0 ∘ ± θ 270^{\circ} \pm \theta 270∘±θ 的值保持不变,对于 18 0 ∘ ± θ 180^{\circ} \pm \theta 180∘±θ 和 36 0 ∘ ± θ 360^{\circ} \pm \theta 360∘±θ 的值保持不变。当我们从 9 0 ∘ ± θ 90^{\circ} \pm \theta 90∘±θ 和 27 0 ∘ ± θ 270^{\circ} \pm \theta 270∘±θ 中加上或减去 θ \theta θ 时,我们得到。
- sin ( 9 0 ∘ ± θ ) = cos θ \sin (90^{\circ} \pm \theta ) = \cos \theta sin(90∘±θ)=cosθ
- cos ( 9 0 ∘ ∓ θ ) = ± sin θ \cos (90^{\circ} \mp \theta ) = \pm\sin \theta cos(90∘∓θ)=±sinθ
- tan ( 9 0 ∘ ∓ θ ) = ± cot θ \tan (90^{\circ} \mp \theta ) = \pm \cot \theta tan(90∘∓θ)=±cotθ
- sec ( 9 0 ∘ ∓ θ ) = ± csc θ \sec (90^{\circ} \mp \theta ) = \pm \csc \theta sec(90∘∓θ)=±cscθ
- sin ( 27 0 ∘ ± θ ) = − cos θ \sin (270^{\circ} \pm \theta ) = - \cos \theta sin(270∘±θ)=−cosθ
- cos ( 27 0 ∘ ± θ ) = ± sin θ \cos (270^{\circ} \pm \theta ) = \pm \sin \theta cos(270∘±θ)=±sinθ
符号看象限
三角函数的符号在其公式中起着重要作用,因为符号随着象限的变化而变化。基本上,符号是基于角所在的象限的。
- 在第一象限(Q1)中,所有三角函数值都是正数 , θ ∈ ( 0 ∘ , 9 0 ∘ ) ,\theta \in (0^{\circ} , 90^{\circ}) ,θ∈(0∘,90∘)。
- 在第二象限(Q2)中,所有的正弦 sin θ \sin\theta sinθ和余割 csc θ \csc\theta cscθ都是正的。 θ ∈ ( 9 0 ∘ , 18 0 ∘ \theta\in (90^{\circ} , 180^{\circ} θ∈(90∘,180∘)。
- 在第三象限(Q3)中,所有的余弦 cos θ \cos\theta cosθ和正割 sec θ \sec\theta secθ都是正数。 θ ∈ ( 18 0 ∘ , 27 0 ∘ \theta \in (180^{\circ} ,270^{\circ} θ∈(180∘,270∘)。
- 在第四象限(Q4)中,所有的正切 tan θ \tan\theta tanθ和 余切 cot θ \cot\theta cotθ都是正的。 θ ∈ ( 27 0 ∘ , 36 0 ∘ \theta \in (270^{\circ} ,360^{\circ} θ∈(270∘,360∘)。
三角解题
只要知道这两个锐角是互余的,即它们相加为 9 0 ∘ = π 2 90^{\circ}=\frac{\pi}{2} 90∘=2π,你就可以解决任何直角三角形:
- 如果你知道三条边中的两条,你可以找到第三条边和两个锐角。
- 如果你知道一个锐角和三条边中的一条,你可以找到另一个锐角和另外两条边。