机器学习
文章平均质量分 90
夏洛的网
这个作者很懒,什么都没留下…
展开
-
论文学习1----理解深度学习需要重新思考泛化Understanding deep learning requires rethinking generalization
——论文地址:Understanding deep learning requires rethinking generalization1、有关新闻1.1 新闻一:参考1:机器之心尽管深度人工神经网络规模庞大,但它们的训练表现和测试表现之间可以表现出非常小的差异。传统的思考是将小的泛化误差要么归结为模型族的特性,要么就认为与训练过程中的正则化技术有关。通过广泛的系统性实验,我们表明这些传统的方法并原创 2017-06-14 11:13:59 · 2546 阅读 · 0 评论 -
TensorFlow学习笔记12----Creating Estimators in tf.contrib.learn
原文教程:tensorflow官方教程记录关键内容与学习感受。未完待续。。Creating Estimators in tf.contrib.learn——tf.contrib.learn框架,通过其高级别的EstimatorAPI,使得构建和训练机器学习模型变得容易。Estimator提供了类,你可以快速的实例化并安装普通的模型类别,如回归器和分类器:LinearClassifier:构建了一个原创 2017-06-12 19:49:35 · 4972 阅读 · 0 评论 -
TensorFlow学习笔记13----TensorFlow Serving
原文教程:tensorflow官方教程记录关键内容与学习感受。未完待续。。TensorFlow Serving——这一部分最后再来看。先放着。1、介绍tensorflow服务器对于机器学习模型来说,是一个灵活的、高效能的服务系统,用来设计生产环境。tensorflow服务器保证相同的服务器架构和API,使得开发新的算法和实验变得容易。2、Basic Serving Tutorialbasic tut原创 2017-07-06 16:34:38 · 6185 阅读 · 0 评论 -
TensorFlow学习笔记14----Convolutional Neural Networks
原文教程:tensorflow官方教程记录关键内容与学习感受。未完待续。。Convolutional Neural Networks1、Overview1.1 Goals1.2 Highlights of the Tutorial1.3 Model Architecture2、Code Organization3、CIFAR-10 Model3.1 Model Inputs3.2 Model Pre原创 2017-07-06 17:10:36 · 553 阅读 · 0 评论 -
生成对抗网络学习笔记2----GANs(Generative Adversarial Nets)总结
原文地址:GANs翻译地址:生成对抗网络此文是对论文Generative Adversarial Nets读后的一个总结。参考博客1:地址 参考博客2:地址 参考新闻3:地址 参考Twitter4:地址1、简单总结GAN是一个极大极小博弈问题,网络中分为两个模型,一个生成模型G,作为生成器,用来生成与真实数据x极为相似的含有噪音z的数据;一个判别模型D,作为判别器,用来判别数据中哪些是真实数据原创 2017-06-20 11:43:47 · 8148 阅读 · 0 评论 -
生成对抗网络学习笔记4----GAN(Generative Adversarial Nets)的实现
首先是各种参考博客、链接等,表示感谢。1、参考博客1:地址 2、参考博客2:地址——以下,开始正文。1、GAN的简单总结见上一篇博客。2、利用GAN生成1维正态分布首先,我们创建“真实”数据分布,一个简单的高斯分布,均值为4,标准差为0.5,。还有一个样本函数,返回分布中给定数量的样本(按值排序过)。class DataDistribution(object): def __init__(原创 2017-06-30 11:38:37 · 2724 阅读 · 8 评论 -
关于机器学习你需要知道的
转自公众号:新智元机器学习著名研究者 Pedro Domingos 教授写了篇文章《机器学习那些事》(A Few Useful Things to Know about Machine Learning)。这是一篇极好的文章,首先作者是在机器学习方面有着深厚功底、非常擅长教人的老师,其次内容丰富全面,更何况他只用了 9 页纸就写完了。对于学术研习来说,9 页纸算轻松读物,但用其他标准就难说了。因此,转载 2017-09-29 09:41:52 · 497 阅读 · 0 评论 -
机器学习专业名词中英文对照
部分转自知乎 部分转自AI人工智能专业词汇集 部分转自百度文库 可参考链接:机器之心otheractivation 激活值 activation function 激活函数 additive noise 加性噪声 autoencoder 自编码器 Auto转载 2017-09-29 09:57:15 · 29292 阅读 · 0 评论 -
【论文学习】Large-scale Video Classification with Convolutional Neural Networks
Large-scale Video Classification with Convolutional Neural Networks原文地址粗略翻译摘要:卷积神经网络(CNN)是图像识别问题上一个非常强大的模型。受到这些结果的鼓舞,我们在大范围的视频分类中提供了广泛的实例评估,我们使用的数据集是100万个、属于487的类别的YouTube视频。为了利用局部时空信息,我们学习了多种方法来扩展CNN在翻译 2017-09-29 15:29:34 · 5222 阅读 · 0 评论 -
生成对抗网络学习笔记5----DCGAN(unsupervised representation learning with deep convolutional generative adv)的实现
首先是各种参考博客、链接等,表示感谢。1、参考博客1:地址——以下,开始正文。2017/12/12 更新 解决训练不收敛的问题。更新在最后面部分。1、DCGAN的简单总结稳定的深度卷积GAN 架构指南:所有的pooling层使用步幅卷积(判别网络)和微步幅度卷积(生成网络)进行替换。在生成网络和判别网络上使用批处理规范化。对于更深的架构移除全连接隐藏层。在生成网络的所有层上使用RelU激活函原创 2017-07-05 21:49:19 · 51708 阅读 · 181 评论 -
sklearn.model_selection.train_test_split划分训练集和测试集
sklearn是python的一个模块,用于机器学习方面。train_test_split是划分数据集的一个函数。1、函数原型1.1 参数:def train_test_split(*arrays, **options): """ Parameters ---------- *arrays : sequence of indexables with same lengt原创 2018-01-10 11:08:49 · 29635 阅读 · 6 评论 -
【ML&DL】logistics regression理解
以前有学过linear classification、linear regression和logistics regression,这次做一下总结,并主要推导一下交叉熵损失函数的由来和梯度下降法。一、概述开头先祭出林轩田老师讲义中的一张图PLA、Linear Regression到logistics regression的区别。误差函数由0/1误差演变为均方误差到交叉熵...原创 2018-03-17 12:30:06 · 2425 阅读 · 0 评论 -
TensorFlow学习笔记11----Building Input Functions with tf.contrib.learn
原文教程:tensorflow官方教程记录关键内容与学习感受。未完待续。。Building Input Functions with tf.contrib.learn——这个教程向你介绍如何在tf.contrib.learn创建输入函数。你可以获得一个如果构造input_fn的综述来对你的模型预处理和喂进数据。接着,接着你可以实现一个input_fn,它可以在神经网络回归量提供训练、验证和预测数据,原创 2017-06-06 20:31:41 · 1733 阅读 · 0 评论 -
TensorFlow学习笔记10----Logging and Monitoring Basics with tf.contrib.learn
原文教程:tensorflow官方教程记录关键内容与学习感受。未完待续。。Logging and Monitoring Basics with tf.contrib.learn——当训练一个模型时,实时地跟踪和验证处理过程是很有价值的。在本教程中,你将学习如何使用tensorflow的日志功能和监督API,来审计一个关于鸢尾花分类的神经网络分类器的训练过程。这个教程的代码依赖于tf.contrib.原创 2017-06-01 15:22:36 · 5545 阅读 · 2 评论 -
生成对抗网络学习笔记1----论文Generative Adversarial Nets
1、阅读论文:Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]// International Conference on Neural Information Processing Systems. MIT Press, 2014:2672-2680.论文地址:GANs2、翻译论文摘要我们原创 2017-05-26 10:28:03 · 16489 阅读 · 7 评论 -
生成对抗网络学习笔记3----论文unsupervised representation learning with deep convolutional generative adversarial
论文原文:地址论文译文:地址1、阅读论文Radford A, Metz L, Chintala S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[J]. Computer Science, 2015.2、翻译论文摘要近年来,使用卷积神经网络的监督学习被大量应用原创 2017-06-20 16:45:16 · 33121 阅读 · 7 评论 -
TensorFlow学习笔记1----介绍
原文教程:tensorflow官方教程 翻译教程:极客学院记录关键内容与学习感受。未完待续。1、使用Python API编写的tensorflow代码生成二维数据,并且拟合成一条直线import tensorflow as tfimport numpy as np#Create 100 phony x,y data point in Numpy, y=x*0.1+0.3x_data = np.原创 2017-04-25 15:32:03 · 830 阅读 · 0 评论 -
TensorsFlow学习笔记2----教程综述
原文教程:tensorflow官方教程 翻译教程:极客学院记录关键内容与学习感受。未完待续。一、基本的神经网络—–第一个tensorflow教程指导你通过训练和测试一个简单的神经网络,来从数字图像的MNIST数据集中分类手写数字。1、面向机器初学者的MNIST教程(MNIST For ML Beginners)—–第一次学习机器学习的人建议从这个教程看起。你将学到一个分类问题,手写数字分类,并且获原创 2017-04-26 20:20:24 · 645 阅读 · 0 评论 -
TensorsFlow学习笔记3----面向机器学习初学者的MNIST教程(MNIST For ML Beginners)
原文教程:tensorflow官方教程 翻译教程:极客学院记录关键内容与学习感受。未完待续。。面向机器初学者的MNIST教程(MNIST For ML Beginners)—–适用于对机器学习和tensorflow初学者。而这里MNIST就好比学语言时候的打印hello world。 —–MNIST是一个简单的计算机视觉数据集,它包括各种手写数字的图像,比如: —–它也包含每张图像对应的标原创 2017-04-27 11:44:09 · 2443 阅读 · 0 评论 -
TensorsFlow学习笔记4----面向机器学习专家的深度MNIST教程(Deep MNIST for Experts)
原文教程:tensorflow官方教程 翻译教程:极客学院记录关键内容与学习感受。未完待续。。面向机器专家的深度MNIST教程(Deep MNIST for Experts)—–tensorflow是一个很强大的库,可以做大型数值运算。其中它最擅长的任务之一就是实现并训练深度神经网络。在这个教程中,我们将学习构建tensorflow模型的基本步骤,然后构建一个深度卷积MNIST分类器。—–这个教程原创 2017-05-02 19:39:02 · 1636 阅读 · 1 评论 -
TensorsFlow学习笔记5----TensorFlow Mechanics 101基本运作方式
原文教程:tensorflow官方教程 翻译教程:极客学院记录关键内容与学习感受。未完待续。。TensorFlow Mechanics 101基本运作方式代码:tensorflow/examples/tutorials/mnist/——本教程的目标是展示如何使用tensorflow,利用MNIST数据集,训练和评估一个可以识别手写数字的简单的前馈神经网络。因此受众是对机器学习有经验并且对tenso原创 2017-05-04 08:44:48 · 1063 阅读 · 0 评论 -
TensorFlow学习笔记6----tf.contrib.learn Quickstart
原文教程:tensorflow官方教程 翻译教程:极客学院记录关键内容与学习感受。未完待续。。tf.contrib.learn 快速介绍——tf.contrib.learn是tensorflow高级别的机器学习API,它可以很轻松安装、训练、验证多种类的机器学习模型。在本教程中,你可以使用它来构建一个神经网络分类器并且利用Iris CSV数据训练,基于花萼、花瓣的几何形状来预测花的种类。——你可以原创 2017-05-09 10:19:39 · 1804 阅读 · 1 评论 -
TensorFlow学习笔记7----Large-scale Linear Models with TensorFlow
原文教程:tensorflow官方教程记录关键内容与学习感受。未完待续。。Large-scale Linear Models with TensorFlow——tensorflow中,tf.learn API提供了大量可供线性模型工作的工具。这篇文档提供了关于这些工具的综述,它解释了:什么是线性模型为什么使用线性模型tf.learn如何帮助构建线性模型如何结合tf.learn和深度学习的线性原创 2017-05-10 09:04:54 · 1435 阅读 · 0 评论 -
TensorFlow学习笔记8----TensorFlow Linear Model Tutorial
原文教程:tensorflow官方教程记录关键内容与学习感受。未完待续。。TensorFlow Linear Model Tutorial——在本教程中,我们将使用tensorflow中tf.learnAPI来解决一个二元分类的问题:对于给定的人口普查数据,例如一个人的年龄、性别、教育、职业(特征),我们要试图预测出一个人一年是否能赚超过50000美元(目标标签),我们将训练一个逻辑回归模型,并且给原创 2017-05-11 17:36:55 · 4818 阅读 · 0 评论 -
TensorFlow学习笔记9----TensorFlow Wide & Deep Learning Tutorial
原文教程:tensorflow官方教程记录关键内容与学习感受。未完待续。。TensorFlow Wide & Deep Learning Tutorial——在前面的教程TensorFlow Linear Model Tutorial中,我们训练了一个逻辑回归模型,使用Census Income Dataset来预测个人年收入是否超过50000美元可能性。tensorflow对于训练深度神经网络也原创 2017-05-25 19:03:34 · 8964 阅读 · 2 评论 -
【SVM】推算公式的由来
主要说明SVM是干什么用的,怎么来的,如何推导公式。 (其中有些公式没有严格打出来,比如矩阵W的转置,大家意会即可)。一、SVM怎么来的1、介绍PLAPLA是perceptron learning algorithm,主要处理线性可分的数据。比如二分类,pla做的就是找到空间中的一条线或超平面,能够将所有点正确分类。用权重w表示这个线或超平面。即sign(wx)=y过程是:首先给出初始化权重。原创 2018-03-12 10:45:56 · 1060 阅读 · 1 评论