利用Multi-LBP和PCA、LDA进行人脸识别

本文介绍了在深度学习流行背景下,如何使用传统方法进行人脸识别,主要包括CLM人脸关键点提取、Multi-LBP特征、PCA降维、LDA分类以及余弦距离相似度判断。实验结果显示,尽管存在一些限制,如样本数量不足,但这种方法在证件验证场景中表现出一定的有效性。
摘要由CSDN通过智能技术生成

在深度学习盛行的大趋势下,还在开发传统的人脸识别方法,显得有些无奈;但是在服务器问题解决之前,我觉得还是有必要了解并实现一下的。

实现如题的人脸识别主要分为五部:

1、CLM截取人脸关键点:用于进行人脸标定;同时也用于测试论文《Blessing of Dimensionality: High-dimensional Feature and Its Efficient Compression for Face Verification》。

2、Multi-LBP:具体主要参考论文《Multi-scale local binary pattern histograms for face recognition》,实现的时候记得区分多尺度LBP和多分辨率LBP;我这里用的是多尺度LBP,多分辨率的没有测试,效果应该差不多。

3、PCA的训练:首先跟人眼位置截取人脸区域,收集人脸数据;然后opencv自带的PCA进行训练;保存特征均值和特征向量。

4、LDA训练:测试为收集18个人,每个人20张图像,共360张图像;用PCA降维后直接送入LDA进行分类学习;LDA来自Opencv。

5、余弦距离进行相似度判断。


现在我们回到LDA的原理上,我们在第一节说讲到了LDA希望投影后希望同一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大,但是这只是一个感官的度量。现在我们首先从比较简单的二类LDA入手,严谨的分析LDA的原理。     假设我们的数据集D={(x1,y1),(x2,y2),...,((xm,ym))}D={(x1,y1),(x2,y2),...,((xm,ym))},其中任意样本xixi为n维向量,yi∈{0,1}yi∈{0,1}。我们定义Nj(j=0,1)Nj(j=0,1)为第j类样本的个数,Xj(j=0,1)Xj(j=0,1)为第j类样本的集合,而μj(j=0,1)μj(j=0,1)为第j类样本的均值向量,定义Σj(j=0,1)Σj(j=0,1)为第j类样本的协方差矩阵(严格说是缺少分母部分的协方差矩阵)。     μjμj的表达式为: μj=1Nj∑x∈Xjx(j=0,1) μj=1Nj∑x∈Xjx(j=0,1)     ΣjΣj的表达式为: Σj=∑x∈Xj(x−μj)(x−μj)T(j=0,1) Σj=∑x∈Xj(x−μj)(x−μj)T(j=0,1)     由于是两类数据,因此我们只需要将数据投影到一条直线上即可。假设我们的投影直线是向量ww,则对任意一个样本本xixi,它在直线ww的投影为wTxiwTxi,对于我们的两个类别的中心点μ0,μ1μ0,μ1,在在直线ww的投影为wTμ0wTμ0和wTμ1wTμ1。由于LDA需要让不同类别的数据的类别中心之间的距离尽可能的大,也就是我们要最大化||wTμ0−wTμ1||22||wTμ0−wTμ1||22,同时我们希望同一种类别数据的投影点尽可能的接近,也就是要同类样本投影点的协方差wTΣ0wwTΣ0w和wTΣ1wwTΣ1w尽可能的小,即最小化wTΣ0w+wTΣ1wwTΣ0w+wTΣ1w。综上所述,我们的优化目标为: argmaxwJ(w)=||wTμ0−wTμ1||22wTΣ0w+wTΣ1w=wT(μ0−μ1)(μ0−μ1)TwwT(Σ0+Σ1)w argmax⏟wJ(w)=||wTμ0−wTμ1||22wTΣ0w+wTΣ1w=wT(μ0−μ1)(μ0−μ1)TwwT(Σ0+Σ1)w     我们一般定义类内散度矩阵SwSw为: Sw=Σ0+Σ1=∑x∈X0(x−μ0)(x−μ0)T+∑x∈X1(x−μ1)(x−μ1)T Sw=Σ0+Σ1=∑x∈X0(x−μ0)(x−μ0)T+∑x∈X1(x−μ1)(x−μ1)T     同时定义类间散度矩阵SbSb为: Sb=(μ0−μ1)(μ0−μ1)T Sb=(μ0−μ1)(μ0−μ1)T     这样我们的优化目标重写为: argmaxwJ(w)=wTSbwwTSww argmax⏟wJ(w)=wTSbwwTSww     仔细一看上式,这不就是我们的广义瑞利商嘛!这就简单了,利用我们第二节讲到的广义瑞利商的性质,我们知道我们的J(w)J(w)最大值为矩阵S−12wSbS−12wSw−12SbSw−12的最大特征值,而对应的ww为S−12wSbS−12wSw−12SbSw−12的最大特征值对应的特征向量! 而S−1wSbSw−1Sb的特征值和S−12wSbS−12wSw−12SbSw−12的特征值相同,S−1wSbSw−1Sb的特征向量w′w′和S−12wSbS−12wSw−12SbSw−12的特征向量ww满足w′=S−12www′=Sw−12w的关系!     注意到对于二类的时候,SbwSbw的方向恒为μ0−μ1μ0−μ1,不妨令Sbw=λ(μ0−μ1)Sbw=λ(μ0−μ1),将其带入:(S−1wSb)w=λw(Sw−1Sb)w=λw,可以得到w=S−1w(μ0−μ1)w=Sw−1(μ0−μ1), 也就是说我们只要求出原始二类样本的均值和方差就可以确定最佳的投影方向ww了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值