R中的矩阵运算-三角分解

基本概念(三角分解相关)

数学中的矩阵论里,置换矩阵是一种系数只由0和1组成的方块矩阵。置换矩阵的每一行和每一列都恰好有一个1,其余的系数都是0。在线性代数中,每个n阶的置换矩阵都代表了一个对n个元素(n维空间的)的置换。当一个矩阵乘上一个置换矩阵时,所得到的是原来矩阵的横行(置换矩阵在左)或纵列(置换矩阵在右)经过置换后得到的矩阵。

A是一个方块矩阵ALU分解是将它分解成如下形式:

 A = LU, \,

其中LU分别是下三角矩阵和上三角矩阵。

例如对于一个3 \times 3的矩阵,就有

         \begin{bmatrix}           a_{11} & a_{12} & a_{13} \\           a_{21} & a_{22} & a_{23} \\           a_{31} & a_{32} & a_{33} \\        \end{bmatrix} =      \begin{bmatrix}           l_{11} & 0 & 0 \\           l_{21} & l_{22} & 0 \\           l_{31} & l_{32} & l_{33} \\        \end{bmatrix}        \begin{bmatrix}           u_{11} & u_{12} & u_{13} \\           0 & u_{22} & u_{23} \\           0 & 0 & u_{33} \\        \end{bmatrix}

一个LDU分解是一个如下形式的分解:

 A = LDU

其中D对角矩阵LU单位三角矩阵(对角线上全是1的三角矩阵)。

一个LUP分解是一个如下形式的分解:

 A = LUP

其中LU仍是三角矩阵P是一个置换矩阵

一个充分消元的LU分解为如下形式:

 PAQ = LU


Cholesky分解

如果矩阵 A埃尔米特矩阵,并且是 正定矩阵,那么可以使, UL共轭转置。也就是说, A可以写成

 A = L L^{*}. \,

这个分解被称作Cholesky分解。对每一个正定矩阵,Cholesky分解都唯一存在。


矩阵的满秩分解

1. 定义:设,若存在矩阵,使得

,则称其为的一个满秩分解。

说明:(1)为列满秩矩阵,即列数等于秩;为行满秩矩阵,即行数等于秩。

(2)满秩分解不唯一。阶可逆方阵),则

,且

2.当A是满秩(列满秩或行满秩)矩阵时,A可分解为单位矩阵与A本身的乘积,称此时的满秩分解为平凡分解


R命令:

1)LU分解(包含满秩分解)

library(Matrix)

> m
3 x 3 Matrix of class "dgeMatrix"
     [,1] [,2] [,3]
[1,]    2   -1    3
[2,]    1    2    1
[3,]    2    4    2

> l <- lu(m)

> l
'MatrixFactorization' of Formal class 'denseLU' [package "Matrix"] with 3 slots
  ..@ x   : num [1:9] 2 1 0.5 -1 5 0.5 3 -1 0
  ..@ perm: int [1:3] 1 3 3
  ..@ Dim : int [1:2] 3 3

> LU <- expand(l) #生成P,L,U

> LU
$L
3 x 3 Matrix of class "dtrMatrix" (unitriangular)
     [,1] [,2] [,3]
[1,]  1.0    .    .
[2,]  1.0  1.0    .
[3,]  0.5  0.5  1.0


$U
3 x 3 Matrix of class "dtrMatrix"
     [,1] [,2] [,3]
[1,]    2   -1    3
[2,]    .    5   -1
[3,]    .    .    0


$P
3 x 3 sparse Matrix of class "pMatrix"
          
[1,] | . .
[2,] . . |
[3,] . | .

A = P*L*U

P为置换矩阵,L为下单位三角矩阵,U为上三角矩阵;

The decomposition is of the form

A = P L U

where typically all matrices are of size n by n, and the matrix P is a permutation matrix, L is lower triangular and U is upper triangular (both of class dtrMatrix).

Note that the dense decomposition is also implemented for a m by n matrix A, when m != n.

If m < n (“wide case”), U is m by n, and hence not triangular.
If m > n (“long case”), L is m by n, and hence not triangular.


2)Choleskey分解
  对于正定矩阵A,可对其进行Choleskey分解,即:A=P'P,其中P为上三角矩阵,在R中可以用函数chol()进行Choleskey分解,例如:
> A
  [,1] [,2] [,3] [,4]
[1,]   2   1   1   1
[2,]   1   2   1   1
[3,]   1   1   2   1
[4,]   1   1   1   2
> chol(A)
        [,1]     [,2]     [,3]     [,4]
[1,] 1.414214 0.7071068 0.7071068 0.7071068
[2,] 0.000000 1.2247449 0.4082483 0.4082483
[3,] 0.000000 0.0000000 1.1547005 0.2886751
[4,] 0.000000 0.0000000 0.0000000 1.1180340
> t(chol(A))%*%chol(A)
  [,1] [,2] [,3] [,4]
[1,]   2   1   1   1
[2,]   1   2   1   1
[3,]   1   1   2   1
[4,]   1   1   1   2
> crossprod(chol(A),chol(A))
  [,1] [,2] [,3] [,4]
[1,]   2   1   1   1
[2,]   1   2   1   1
[3,]   1   1   2   1
[4,]   1   1   1   2
若矩阵为对称正定矩阵,可以利用Choleskey分解求行列式的值,如:
> prod(diag(chol(A))^2)
[1] 5
> det(A)
[1] 5
若矩阵为对称正定矩阵,可以利用Choleskey分解求矩阵的逆,这时用函数chol2inv(),这种用法更有效。如:
> chol2inv(chol(A))
      [,1] [,2] [,3] [,4]
[1,] 0.8 -0.2 -0.2 -0.2
[2,] -0.2 0.8 -0.2 -0.2
[3,] -0.2 -0.2 0.8 -0.2
[4,] -0.2 -0.2 -0.2 0.8
> solve(A)
  [,1] [,2] [,3] [,4]
[1,] 0.8 -0.2 -0.2 -0.2
[2,] -0.2 0.8 -0.2 -0.2
[3,] -0.2 -0.2 0.8 -0.2
[4,] -0.2 -0.2 -0.2 0.8









  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值